Even cycles

Zdeněk Dvořák

October 30, 2020

From the last lecture:
Theorem 1. If F is a bipartite graph such that all vertices in one of the parts of its bipartition have degree at most a, then

$$
\operatorname{ex}(n ; F)=O\left(n^{2-1 / a}\right)
$$

For even cycles, this gives $\operatorname{ex}\left(n ; C_{2 k}\right)=O\left(n^{3 / 2}\right)$. On the other hand, the straightforward lower bound is much lower.

Lemma 2. For every integer $k \geq 2$,

$$
\operatorname{ex}\left(n ; C_{2 k}\right)=\Omega\left(n^{1+1 /(2 k-1)}\right) .
$$

Proof. Let $c=6^{1 /(1-2 k)}$. Consider a random n-vertex graph G, where each pair of vertices forms an edge independently at random with probability

$$
p=c n^{-\frac{2 k-2}{2 k-1}} .
$$

For $n \geq 3$, we have

$$
E[\|G\|]=p\binom{n}{2} \geq \frac{p}{3} n^{2}=\frac{c}{3} n^{1+1 /(2 k-1)}
$$

and

$$
E[\text { number of } 2 k \text {-cycles }] \leq n^{2 k} p^{2 k}=c^{2 k} n^{1+1 /(2 k-1)}=\frac{c}{6} n^{1+1 /(2 k-1)} .
$$

After deleting an edge from each $2 k$-cycle, the graph still has $\Omega\left(n^{1+1 /(2 k-1)}\right)$ edges left.

Let us remark that there exist slightly better (and more explicit) constructions. Our goal is to prove a better upper bound (Bondy-Simonovits theorem). Let us start with a few lemmas.

Lemma 3. Let H be a graph consisting of a cycle with a chord and let (A, B) be a partition of its vertices to non-empty parts such that $E(H[A]) \cup$ $E(H[B]) \neq 0$. Then for every integer ℓ such that $1 \leq \ell \leq|H|-1$, there exists a path in H from A to B of length exactly ℓ.

Proof. Let $n=|H|$. Let us label the vertices of H by the elements of \mathbb{Z}_{n} in order along the cycle and let $a: \mathbb{Z}_{n} \rightarrow\{0,1\}$ be the characteristic function of the set A. Let e be the chord of the cycle of H, without loss of generality incident with the vertex 0 . Let v denote the other end of e; by symmetry, we can assume $v \leq n-v$.

If the cycle $H-e$ contains paths of all lengths between 1 and $n-1$ from A to B, then we are done. Otherwise, consider the smallest integer t such that $1 \leq t \leq n-1$ and $H-e$ does not contain a path of length t from A to B. Then $a(x)=a(x+t)$ for every $x \in \mathbb{Z}_{n}$, and consequently $a(x)=a(x+m t)$ for every integer m. Let $q=\operatorname{gcd}(t, n)$; then there exist integers m and r such that $q=m t+r n$, and thus $a(x+q)=a(x+m t+r n)=a(x+m t)=a(x)$ for every $x \in \mathbb{Z}_{n}$. Hence, $H-e$ does not contain a path of length q from A to B, and the minimality of t implies $t=q$. Hence, $t=\operatorname{gcd}(t, n)$, and t divides n. Since both A and B are non-empty, we have $t \geq 2$.

The minimality of t implies that for every $t^{\prime} \in\{1, \ldots, t-1\}$, there exists a path of length t^{\prime} in $H-e$ from A to B, and thus for some $x \in \mathbb{Z}_{n}$ we have $a(x) \neq a\left(x+t^{\prime}\right)$. Since $a(x)=a(x+m t)$ for every integer m, the following claim holds.
(\star) For every $t^{\prime} \in\{1, \ldots, t-1\}$ and any set K of t consecutive vertices of $H-e$, there exists $x \in K$ such that $a(x) \neq a(x+s)$ for every s such that $s \equiv t^{\prime}(\bmod t)$.

In particular, $H-e$ contains a path from A to B of length ℓ for every $\ell \in\{1, \ldots, n-1\}$ not divisible by t.

Consider now any $\ell \in\{1, \ldots, n-1\}$ divisible by t. We now consider the paths containing the chord e. First, let us consider the case that $v \leq t$; we have $v \geq 2$, since e is a chord of the cycle $H-e$. By ($($) there exists $x \in\{0,1, \ldots, t-1\}$ such that $a(n-x) \neq a(n-x+s)$ for every $s \equiv v-1$ $(\bmod t)$. Then $(n-x)(n-x+1) \ldots 0 v(v+1) \ldots(\ell+v-x-1)$ is a path from A to B of length ℓ (it is indeed a path, i.e., the vertices in the described sequence do not repeat, since $\ell+v-1<n$).

Therefore, we can assume $t<v<n-t$. Let us say that a path in H containing the edge e is bent if it contains at most one of the edges $(n-1) 0$ and $v(v+1)$ and at most one of the edges 01 and $(v-1) v$. Suppose now that H contains a bent path P of length t from A to B. By symmetry, we can assume P does not contain the edges $(n-1) 0$ and $(v-1) v$. Let $w \in\{0, \ldots, t-1\}$
and $z \in\{v, \ldots, v+t-1\}$ be the ends of P. If $w+\ell-t \leq v-1$, then the concatenation of P with the path $w \ldots(w+\ell-t)$ is a path of length ℓ from A to B. Otherwise, let w^{\prime} be the largest integer smaller than v such that $w^{\prime} \equiv w(\bmod t)$; then the concatenation of P with the paths $w \ldots w^{\prime}$ and $v \ldots\left(v+\ell+w-w^{\prime}-t\right)$ is a path of length ℓ from A to B (it is indeed a path, i.e., the vertices in the described sequence do not repeat, since $\left.v+\ell+w-w^{\prime}-t=\left(v-w^{\prime}-t\right)+\ell+w \leq \ell+w<n\right)$.

Therefore, we can assume no such bent path exists, and thus
(a) for $w \in\{0, \ldots, t-1\}$ we have $a(w)=a(v+t-1-w)$, and
(b) for $w \in\{0, \ldots, t-1\}$ we have $a(-w)=a(v-t+1+w)$.

Therefore, for $w \in\{1, \ldots, t-1\}$ we have
$a(v-1-w)=a(v+t-1-w)=a(w)=a(w-t)=a(v-t+1+(t-w))=a(v+1-w)$.
Moreover (for $w=0$) we have

$$
a(v+1)=a(v-t+1)=a(0)=a(v+t-1) .
$$

Therefore, $a(x)=a(x+2)$ for $x \in\{v-t, \ldots, v-1\}$. Since this holds for t consecutive values of x, the periodicity of a implies that it holds for every $x \in \mathbb{Z}_{n}$. The minimality of t implies that $t=2$ and (A, B) is a bipartition of the cycle $H-e$. By (a) we have $a(0)=a(v+1)$, and thus $a(0) \neq a(v)$ and $e \notin E(H[A]) \cup E(H[B])$. This contradicts the assumption $E(H[A]) \cup E(H[B]) \neq 0$.

Lemma 4. Let $k \geq 2$ be an integer. Let v be a vertex of a connected graph G. For $i \geq 0$, let V_{i} denote the set of vertices of G at distance exactly i from v, and let G_{i} denote the bipartite subgraph of G between V_{i} and V_{i+1}. If G does not contain a cycle of length $2 k$ and $i \leq k-1$, then neither G_{i} nor $G\left[V_{i}\right]$ contains a bipartite subgraph isomorphic to a cycle of length at least $2 k$ with a chord.

Proof. Suppose for a contradiction F is such a bipartite subgraph in G_{i} or $G\left[V_{i}\right]$, and let (Y, Z) be its bipartition such that $Y \subseteq V_{i}$. Clearly $i \geq 1$ and $|Y| \geq 2$. For every vertex $x \in V_{j}$ such that $j \geq 1$, choose an arbitrary edge from x to V_{j-1} and let T denote the spanning tree of G consisting of these edges, rooted in v. Let y be the deepest vertex of T such that the subtree of T rooted in y contains Y. Let a be a child of y such that the subtree of a rooted in a contains at least one vertex of Y. Let A denote the set of vertices of Y contained in this subtree and let $B=V(F) \backslash A$. The choice of
y implies $Y \cap B \neq \emptyset$, and since (Y, Z) is a bipartition of F and $Z \subseteq B$, we have $E(F[B]) \neq \emptyset$.

Let t be the length of the paths from y to Y in T, and note that $1 \leq$ $t \leq i \leq k-1$. By Lemma $3, F$ contains a path Q from A to B of length $2(k-t)$. Note that the end of Q in B belongs to Y, since Q has even length, (Y, Z) is a bipartition of G, and $A \subseteq F$. The union of Q with the paths in T from the ends of Q to y gives a cycle of length exactly $2 k$ in G, which is a contradiction.

Lemma 5. Suppose $d \geq 3$ is an integer and G is a bipartite graph of average degree at least $2 d$. Then G contains a cycle of length at least $2 d$ with a chord.

Proof. By repeatedly deleting vertices of degree less than d, we obtain a subgraph $G^{\prime} \subseteq G$ of minimum degree at least d. Let $P=v_{1} v_{2} \ldots v_{m}$ be a longest path in G^{\prime}. Then all neighbors of v_{1} belong to P and have even indices. Suppose v_{a} and v_{b} are such neighbors with the largest indices such that $a<b$. Note that $b \geq 2 d$, and the cycle $v_{1} \ldots v_{b}$ has a chord $v_{1} v_{a}$.

Corollary 6. Let $d \geq 3$ be an integer and let G be a graph of average degree at least 4d. Then G contains a bipartite subgraph isomorphic to a cycle of length at least $2 d$ with a chord.

Proof. Observe G has a bipartite subgraph of average degree at least $2 d$. We apply Lemma 5 to this subgraph.

Theorem 7. For every integer $k \geq 2$, we have

$$
\operatorname{ex}\left(n ; C_{2 k}\right)=O\left(n^{1+1 / k}\right) .
$$

Proof. For $k=2$ we know that $\operatorname{ex}\left(n ; C_{4}\right)=\Theta\left(n^{3 / 2}\right)$, and thus we can assume $k \geq 3$. Let H be an n-vertex graph without $C_{2 k}$ such that $\|H\|=\operatorname{ex}\left(n ; C_{2 k}\right)$, and let $d=\frac{\operatorname{ex}\left(n ; C_{2 k}\right)}{n}$. For a contradiction suppose that $d>6 k+2 k n^{1 / k}$. The graph H has average degree $2 d$, and thus it contains a connected subgraph G of minimum degree at least d.

Let v be an arbitrary vertex of G. For $i \geq 0$, let V_{i} denote the set of vertices of G at distance exactly i from v, and let G_{i} denote the bipartite subgraph of G between V_{i} and V_{i+1}.

For $0 \leq i \leq k-1$, Lemma 4 implies that neither G_{i} nor $G\left[V_{i}\right]$ contains a bipartite subgraph isomorphic to a cycle of length at least $2 k$ with a chord. Lemma 5 and Corollary 6 imply that G_{i} and $G\left[V_{i}\right]$ have average degrees less than $2 k$ and $4 k$, respectively. We now prove by induction on i that for $0 \leq i \leq k-1$, we have

$$
\left\|G_{i}\right\|<2 k\left|V_{i+1}\right| .
$$

For $i=0$, we have $\left\|G_{i}\right\|=\operatorname{deg} v=\left|V_{i+1}\right|$, and thus the claim holds. Suppose now that $i>0$ and the claim is true for smaller values of i. Then

$$
\begin{aligned}
\left\|G_{i}\right\| & =\left(\sum_{v \in V_{i}} \operatorname{deg} v\right)-\left\|G_{i-1}\right\|-2\left\|G\left[V_{i}\right]\right\| \\
& >d\left|V_{i}\right|-2 k\left|V_{i}\right|-4 k\left|V_{i}\right|=(d-6 k)\left|V_{i}\right|>2 k\left|V_{i}\right| .
\end{aligned}
$$

Consequently, the vertices of G_{i} belonging to V_{i} have average degree

$$
\frac{\sum_{v \in V_{i}} \operatorname{deg}_{G_{i}}(v)}{\left|V_{i}\right|}=\frac{\left\|G_{i}\right\|}{\left|V_{i}\right|}>2 k .
$$

Since G_{i} has average degree less than $2 k$, the vertices of G_{i} belonging to V_{i+1} must have average degree less than $2 k$, and thus $\left\|G_{i}\right\|<2 k\left|V_{i+1}\right|$.

For $i \in\{0, \ldots, k-1\}$, this gives

$$
(d-6 k)\left|V_{i}\right|<\left\|G_{i}\right\|<2 k\left|V_{i+1}\right|,
$$

and thus

$$
\left|V_{i+1}\right|>\frac{d-6 k}{2 k}\left|V_{i}\right|
$$

and

$$
n \geq\left|V_{k}\right|>\left(\frac{d-6 k}{2 k}\right)^{k} .
$$

Therefore $d \leq 6 k+2 k n^{1 / k}$, which is a contradiction.

