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From the last lecture:

Theorem 1. If F is a bipartite graph such that all vertices in one of the
parts of its bipartition have degree at most a, then

ex(n; F) = O(n*7V/9).

For even cycles, this gives ex(n; Cy,) = O(n*?). On the other hand, the
straightforward lower bound is much lower.

Lemma 2. For every integer k > 2,
ex(n; Oy ) = Q(n* /=1,

Proof. Let ¢ = 6/(=2%) Consider a random n-vertex graph G, where each
pair of vertices forms an edge independently at random with probability

For n > 3, we have

Bllcl=p(}) >

%7 2 _ & 141/(2k-1)

3
and
E[number of 2k-cycles] < n?p?* = 2rp!H/ (k-1 — i1/ k=),
- 6
After deleting an edge from each 2k-cycle, the graph still has Q(n!*!/(2=1))
edges left. n

Let us remark that there exist slightly better (and more explicit) con-
structions. Our goal is to prove a better upper bound (Bondy-Simonovits
theorem). Let us start with a few lemmas.
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Lemma 3. Let H be a graph consisting of a cycle with a chord and let
(A, B) be a partition of its vertices to non-empty parts such that E(H[A]) U
E(H[B]) # 0. Then for every integer { such that 1 < ¢ < |H| — 1, there
exists a path in H from A to B of length exactly £.

Proof. Let n = |H|. Let us label the vertices of H by the elements of Z, in
order along the cycle and let a : Z,, — {0,1} be the characteristic function
of the set A. Let e be the chord of the cycle of H, without loss of generality
incident with the vertex 0. Let v denote the other end of e; by symmetry,
we can assume v < n — 0.

If the cycle H — e contains paths of all lengths between 1 and n — 1 from
A to B, then we are done. Otherwise, consider the smallest integer ¢ such
that 1 <t <n—1and H —e does not contain a path of length ¢ from A to B.
Then a(z) = a(xz + t) for every x € Z,, and consequently a(z) = a(x + mt)
for every integer m. Let ¢ = ged(t, n); then there exist integers m and r such
that ¢ = mt+rn, and thus a(z+¢q) = a(zr+mt+rn) = a(r+mt) = a(x) for
every x € Z,. Hence, H — e does not contain a path of length ¢ from A to
B, and the minimality of ¢ implies ¢t = ¢q. Hence, t = ged(t,n), and ¢ divides
n. Since both A and B are non-empty, we have t > 2.

The minimality of ¢ implies that for every ¢ € {1,...,t — 1}, there exists
a path of length ¢’ in H — e from A to B, and thus for some x € 7Z,, we have
a(z) # a(z +t'). Since a(z) = a(x + mt) for every integer m, the following
claim holds.

(x) For every ' € {1,...,t — 1} and any set K of ¢ consecutive vertices of
H — e, there exists © € K such that a(z) # a(xz + s) for every s such
that s =t (mod t).

In particular, H — e contains a path from A to B of length ¢ for every
¢e{1,...,n— 1} not divisible by t.

Consider now any ¢ € {1,...,n — 1} divisible by t. We now consider
the paths containing the chord e. First, let us consider the case that v < t;
we have v > 2, since e is a chord of the cycle H — e. By (%) there exists
r €{0,1,...,t — 1} such that a(n — x) # a(n —x + s) for every s = v — 1
(mod t). Then (n —z)(n—x+1)...0v(v+1)...(¢ +v—2 —1) is a path
from A to B of length ¢ (it is indeed a path, i.e., the vertices in the described
sequence do not repeat, since £ +v — 1 < n).

Therefore, we can assume t < v < n —t. Let us say that a path in H
containing the edge e is bent if it contains at most one of the edges (n — 1)0
and v(v+1) and at most one of the edges 01 and (v—1)v. Suppose now that H
contains a bent path P of length ¢ from A to B. By symmetry, we can assume
P does not contain the edges (n — 1)0 and (v — 1)v. Let w € {0,...,t — 1}
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and z € {v,..., v+t — 1} be the ends of P. If w+ /¢ —1t < v — 1, then
the concatenation of P with the path w...(w + ¢ — t) is a path of length
¢ from A to B. Otherwise, let w’ be the largest integer smaller than v
such that w' = w (mod t); then the concatenation of P with the paths
w...w and v...(v+ £+ w—w —t) is a path of length ¢ from A to B (it
is indeed a path, i.e., the vertices in the described sequence do not repeat,
sincev+l+w—w —t=@w—w —t)+l+w<l+w<n).
Therefore, we can assume no such bent path exists, and thus

(a) for w € {0,...,t — 1} we have a(w) = a(v+t—1—w), and
(b) for w € {0,...,t — 1} we have a(—w) = a(v —t + 1 + w).
Therefore, for w € {1,...,t — 1} we have
a(v—1—w) = a(v+t—1—w) = a(w) = a(w—t) = a(v—t+1+(t—w)) = a(v+1—w).
Moreover (for w = 0) we have
av+1)=av—t+1)=a(0) =alv+t—1).

Therefore, a(x) = a(x + 2) for x € {v —t,...,v — 1}. Since this holds
for ¢t consecutive values of z, the periodicity of a implies that it holds for
every * € Z,. The minimality of ¢ implies that t = 2 and (A, B) is a
bipartition of the cycle H — e. By (a) we have a(0) = a(v + 1), and thus
a(0) # a(v) and e ¢ E(H[A]) U E(H[B]). This contradicts the assumption
E(H[A)) U B(H[B]) % 0. O

Lemma 4. Let k > 2 be an integer. Let v be a vertex of a connected graph
G. Fori >0, let V; denote the set of vertices of G at distance exactly i from
v, and let G; denote the bipartite subgraph of G between V; and Viy,. If G
does not contain a cycle of length 2k and i < k—1, then neither G; nor G[V}]
contains a bipartite subgraph isomorphic to a cycle of length at least 2k with
a chord.

Proof. Suppose for a contradiction F' is such a bipartite subgraph in G; or
G[V;], and let (Y, Z) be its bipartition such that Y C V. Clearly i > 1 and
Y| > 2. For every vertex x € V; such that j > 1, choose an arbitrary edge
from x to V;_; and let T" denote the spanning tree of G consisting of these
edges, rooted in v. Let y be the deepest vertex of T' such that the subtree
of T rooted in y contains Y. Let a be a child of y such that the subtree
of a rooted in a contains at least one vertex of Y. Let A denote the set of
vertices of Y contained in this subtree and let B = V(F') \ A. The choice of



y implies Y N B # (), and since (Y, Z) is a bipartition of F' and Z C B, we
have E(F[B]) # 0.

Let t be the length of the paths from y to Y in 7', and note that 1 <
t <i<k—1. By Lemma 3, F contains a path @) from A to B of length
2(k —t). Note that the end of @ in B belongs to Y, since ) has even length,
(Y, Z) is a bipartition of G, and A C F. The union of ) with the paths in
T from the ends of @ to y gives a cycle of length exactly 2k in G, which is a
contradiction. O]

Lemma 5. Suppose d > 3 is an integer and G is a bipartite graph of average
degree at least 2d. Then G contains a cycle of length at least 2d with a chord.

Proof. By repeatedly deleting vertices of degree less than d, we obtain a
subgraph G’ C G of minimum degree at least d. Let P = wvyvs...v,, be
a longest path in G’. Then all neighbors of v; belong to P and have even
indices. Suppose v, and v, are such neighbors with the largest indices such
that a < b. Note that b > 2d, and the cycle v; ... v, has a chord vyv,. O

Corollary 6. Let d > 3 be an integer and let G be a graph of average degree
at least 4d. Then G contains a bipartite subgraph isomorphic to a cycle of
length at least 2d with a chord.

Proof. Observe GG has a bipartite subgraph of average degree at least 2d. We
apply Lemma 5 to this subgraph. O

Theorem 7. For every integer k > 2, we have
ex(n; Cop,) = O(n'+V/k),

Proof. For k = 2 we know that ex(n; Cy) = ©(n*?), and thus we can assume
k > 3. Let H be an n-vertex graph without Cyy, such that ||H|| = ex(n; Cox),
and let d = M For a contradiction suppose that d > 6k + 2kn'/*. The
graph H has average degree 2d, and thus it contains a connected subgraph
G of minimum degree at least d.

Let v be an arbitrary vertex of G. For ¢ > 0, let V; denote the set of
vertices of G at distance exactly ¢ from v, and let G; denote the bipartite
subgraph of G between V; and V.

For 0 <i <k — 1, Lemma 4 implies that neither G; nor G[V;] contains a
bipartite subgraph isomorphic to a cycle of length at least 2k with a chord.
Lemma 5 and Corollary 6 imply that G; and G[V;] have average degrees
less than 2k and 4k, respectively. We now prove by induction on ¢ that for
0<i<k-—1, we have

1Gill < 2Kk[Vial.
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For i = 0, we have ||G;|| = degv = |V;41], and thus the claim holds. Suppose
now that 7 > 0 and the claim is true for smaller values of 7. Then

1Gill = (3 degv) = 1Gial - 2G|

veV;
> dVi| = 2|Vl — K|V] = (d — G)|Vi| > 2K|Vi].

Consequently, the vertices of G; belonging to V; have average degree

Soev, dega,(v) _ Gl _
v v

Since G; has average degree less than 2k, the vertices of GG; belonging to V14
must have average degree less than 2k, and thus ||G;|| < 2k|Vi44].
For i € {0,...,k — 1}, this gives

(d = 6R)|Vi| < [IGill < 2K|Vial,

and thus

d — 6k
Vi — Vi,
Vig1] > ok Vil
and d — Gk &
> |V ( — ) .
nz Vel > (=5
Therefore d < 6k + 2kn'/*, which is a contradiction. O]



