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From the last lecture:

Theorem 1. If F is a bipartite graph such that all vertices in one of the
parts of its bipartition have degree at most a, then

ex(n;F ) = O(n2−1/a).

For even cycles, this gives ex(n;C2k) = O(n3/2). On the other hand, the
straightforward lower bound is much lower.

Lemma 2. For every integer k ≥ 2,

ex(n;C2k) = Ω(n1+1/(2k−1)).

Proof. Let c = 61/(1−2k). Consider a random n-vertex graph G, where each
pair of vertices forms an edge independently at random with probability

p = cn−
2k−2
2k−1 .

For n ≥ 3, we have

E[‖G‖] = p

(
n

2

)
≥ p

3
n2 =

c

3
n1+1/(2k−1)

and

E[number of 2k-cycles] ≤ n2kp2k = c2kn1+1/(2k−1) =
c

6
n1+1/(2k−1).

After deleting an edge from each 2k-cycle, the graph still has Ω(n1+1/(2k−1))
edges left.

Let us remark that there exist slightly better (and more explicit) con-
structions. Our goal is to prove a better upper bound (Bondy-Simonovits
theorem). Let us start with a few lemmas.
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Lemma 3. Let H be a graph consisting of a cycle with a chord and let
(A,B) be a partition of its vertices to non-empty parts such that E(H[A]) ∪
E(H[B]) 6= 0. Then for every integer ` such that 1 ≤ ` ≤ |H| − 1, there
exists a path in H from A to B of length exactly `.

Proof. Let n = |H|. Let us label the vertices of H by the elements of Zn in
order along the cycle and let a : Zn → {0, 1} be the characteristic function
of the set A. Let e be the chord of the cycle of H, without loss of generality
incident with the vertex 0. Let v denote the other end of e; by symmetry,
we can assume v ≤ n− v.

If the cycle H − e contains paths of all lengths between 1 and n− 1 from
A to B, then we are done. Otherwise, consider the smallest integer t such
that 1 ≤ t ≤ n−1 and H−e does not contain a path of length t from A to B.
Then a(x) = a(x + t) for every x ∈ Zn, and consequently a(x) = a(x + mt)
for every integer m. Let q = gcd(t, n); then there exist integers m and r such
that q = mt+ rn, and thus a(x+ q) = a(x+mt+ rn) = a(x+mt) = a(x) for
every x ∈ Zn. Hence, H − e does not contain a path of length q from A to
B, and the minimality of t implies t = q. Hence, t = gcd(t, n), and t divides
n. Since both A and B are non-empty, we have t ≥ 2.

The minimality of t implies that for every t′ ∈ {1, . . . , t− 1}, there exists
a path of length t′ in H − e from A to B, and thus for some x ∈ Zn we have
a(x) 6= a(x + t′). Since a(x) = a(x + mt) for every integer m, the following
claim holds.

(?) For every t′ ∈ {1, . . . , t− 1} and any set K of t consecutive vertices of
H − e, there exists x ∈ K such that a(x) 6= a(x + s) for every s such
that s ≡ t′ (mod t).

In particular, H − e contains a path from A to B of length ` for every
` ∈ {1, . . . , n− 1} not divisible by t.

Consider now any ` ∈ {1, . . . , n − 1} divisible by t. We now consider
the paths containing the chord e. First, let us consider the case that v ≤ t;
we have v ≥ 2, since e is a chord of the cycle H − e. By (?) there exists
x ∈ {0, 1, . . . , t − 1} such that a(n − x) 6= a(n − x + s) for every s ≡ v − 1
(mod t). Then (n − x)(n − x + 1) . . . 0v(v + 1) . . . (` + v − x − 1) is a path
from A to B of length ` (it is indeed a path, i.e., the vertices in the described
sequence do not repeat, since ` + v − 1 < n).

Therefore, we can assume t < v < n − t. Let us say that a path in H
containing the edge e is bent if it contains at most one of the edges (n− 1)0
and v(v+1) and at most one of the edges 01 and (v−1)v. Suppose now that H
contains a bent path P of length t from A to B. By symmetry, we can assume
P does not contain the edges (n− 1)0 and (v − 1)v. Let w ∈ {0, . . . , t− 1}
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and z ∈ {v, . . . , v + t − 1} be the ends of P . If w + ` − t ≤ v − 1, then
the concatenation of P with the path w . . . (w + ` − t) is a path of length
` from A to B. Otherwise, let w′ be the largest integer smaller than v
such that w′ ≡ w (mod t); then the concatenation of P with the paths
w . . . w′ and v . . . (v + ` + w − w′ − t) is a path of length ` from A to B (it
is indeed a path, i.e., the vertices in the described sequence do not repeat,
since v + ` + w − w′ − t = (v − w′ − t) + ` + w ≤ ` + w < n).

Therefore, we can assume no such bent path exists, and thus

(a) for w ∈ {0, . . . , t− 1} we have a(w) = a(v + t− 1− w), and

(b) for w ∈ {0, . . . , t− 1} we have a(−w) = a(v − t + 1 + w).

Therefore, for w ∈ {1, . . . , t− 1} we have

a(v−1−w) = a(v+t−1−w) = a(w) = a(w−t) = a(v−t+1+(t−w)) = a(v+1−w).

Moreover (for w = 0) we have

a(v + 1) = a(v − t + 1) = a(0) = a(v + t− 1).

Therefore, a(x) = a(x + 2) for x ∈ {v − t, . . . , v − 1}. Since this holds
for t consecutive values of x, the periodicity of a implies that it holds for
every x ∈ Zn. The minimality of t implies that t = 2 and (A,B) is a
bipartition of the cycle H − e. By (a) we have a(0) = a(v + 1), and thus
a(0) 6= a(v) and e 6∈ E(H[A]) ∪ E(H[B]). This contradicts the assumption
E(H[A]) ∪ E(H[B]) 6= 0.

Lemma 4. Let k ≥ 2 be an integer. Let v be a vertex of a connected graph
G. For i ≥ 0, let Vi denote the set of vertices of G at distance exactly i from
v, and let Gi denote the bipartite subgraph of G between Vi and Vi+1. If G
does not contain a cycle of length 2k and i ≤ k−1, then neither Gi nor G[Vi]
contains a bipartite subgraph isomorphic to a cycle of length at least 2k with
a chord.

Proof. Suppose for a contradiction F is such a bipartite subgraph in Gi or
G[Vi], and let (Y, Z) be its bipartition such that Y ⊆ Vi. Clearly i ≥ 1 and
|Y | ≥ 2. For every vertex x ∈ Vj such that j ≥ 1, choose an arbitrary edge
from x to Vj−1 and let T denote the spanning tree of G consisting of these
edges, rooted in v. Let y be the deepest vertex of T such that the subtree
of T rooted in y contains Y . Let a be a child of y such that the subtree
of a rooted in a contains at least one vertex of Y . Let A denote the set of
vertices of Y contained in this subtree and let B = V (F ) \A. The choice of
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y implies Y ∩ B 6= ∅, and since (Y, Z) is a bipartition of F and Z ⊆ B, we
have E(F [B]) 6= ∅.

Let t be the length of the paths from y to Y in T , and note that 1 ≤
t ≤ i ≤ k − 1. By Lemma 3, F contains a path Q from A to B of length
2(k− t). Note that the end of Q in B belongs to Y , since Q has even length,
(Y, Z) is a bipartition of G, and A ⊆ F . The union of Q with the paths in
T from the ends of Q to y gives a cycle of length exactly 2k in G, which is a
contradiction.

Lemma 5. Suppose d ≥ 3 is an integer and G is a bipartite graph of average
degree at least 2d. Then G contains a cycle of length at least 2d with a chord.

Proof. By repeatedly deleting vertices of degree less than d, we obtain a
subgraph G′ ⊆ G of minimum degree at least d. Let P = v1v2 . . . vm be
a longest path in G′. Then all neighbors of v1 belong to P and have even
indices. Suppose va and vb are such neighbors with the largest indices such
that a < b. Note that b ≥ 2d, and the cycle v1 . . . vb has a chord v1va.

Corollary 6. Let d ≥ 3 be an integer and let G be a graph of average degree
at least 4d. Then G contains a bipartite subgraph isomorphic to a cycle of
length at least 2d with a chord.

Proof. Observe G has a bipartite subgraph of average degree at least 2d. We
apply Lemma 5 to this subgraph.

Theorem 7. For every integer k ≥ 2, we have

ex(n;C2k) = O(n1+1/k).

Proof. For k = 2 we know that ex(n;C4) = Θ(n3/2), and thus we can assume
k ≥ 3. Let H be an n-vertex graph without C2k such that ‖H‖ = ex(n;C2k),

and let d = ex(n;C2k)
n

. For a contradiction suppose that d > 6k + 2kn1/k. The
graph H has average degree 2d, and thus it contains a connected subgraph
G of minimum degree at least d.

Let v be an arbitrary vertex of G. For i ≥ 0, let Vi denote the set of
vertices of G at distance exactly i from v, and let Gi denote the bipartite
subgraph of G between Vi and Vi+1.

For 0 ≤ i ≤ k − 1, Lemma 4 implies that neither Gi nor G[Vi] contains a
bipartite subgraph isomorphic to a cycle of length at least 2k with a chord.
Lemma 5 and Corollary 6 imply that Gi and G[Vi] have average degrees
less than 2k and 4k, respectively. We now prove by induction on i that for
0 ≤ i ≤ k − 1, we have

‖Gi‖ < 2k|Vi+1|.
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For i = 0, we have ‖Gi‖ = deg v = |Vi+1|, and thus the claim holds. Suppose
now that i > 0 and the claim is true for smaller values of i. Then

‖Gi‖ =
(∑
v∈Vi

deg v
)
− ‖Gi−1‖ − 2‖G[Vi]‖

> d|Vi| − 2k|Vi| − 4k|Vi| = (d− 6k)|Vi| > 2k|Vi|.

Consequently, the vertices of Gi belonging to Vi have average degree∑
v∈Vi

degGi
(v)

|Vi|
=
‖Gi‖
|Vi|

> 2k.

Since Gi has average degree less than 2k, the vertices of Gi belonging to Vi+1

must have average degree less than 2k, and thus ‖Gi‖ < 2k|Vi+1|.
For i ∈ {0, . . . , k − 1}, this gives

(d− 6k)|Vi| < ‖Gi‖ < 2k|Vi+1|,

and thus

|Vi+1| >
d− 6k

2k
|Vi|,

and

n ≥ |Vk| >
(d− 6k

2k

)k
.

Therefore d ≤ 6k + 2kn1/k, which is a contradiction.
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