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From the first lecture:

Theorem 1. If F is a bipartite graph with one of the parts of size a, then

ex(n;F ) = O(n2−1/a).

We want to generalize this to graphs in which one of the parts only
contains vertices of degree at most a. Idea: Let us find a large set B of
vertices such that every a vertices of B have many common neighbors. How
to find such a set? Let us select several vertices at random and choose B as
the set of their common neighbors. If some vertices of B had few common
neighbors, we would have only a small probability that we hit all of them
with the random choice. More precisely, this gives us the following lemma.

Lemma 2. Let G be an n-vertex graph and let a, b, m, and t be positive
integers. If

‖G‖ ≥ (b + mtna−t)1/tn2−1/t,

then there exists a set B ⊆ V (G) of size at least b such that every a vertices
of B have at least m common neighbors.

Proof. Let us select the vertices v1, . . . , vt uniformly independently at ran-
dom, and let B0 be the set of their common neighbors. For every vertex v,
the probability that v ∈ B0, that is, that v1, . . . , vt are neighbors of v, is
equal to n−t degt(v). Hence,

E[|B0|] = n−t
∑

v∈V (G)

degt(v) ≥ n1−2t
( ∑
v∈V (G)

deg v
)t

> n1−2t‖G‖t ≥ b + mtna−t.

What is the probability that an a-tuple u1, . . . , ua of vertices with less than
m common neighbors belongs to B0? We would have to hit these common
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neighbors with v1, . . . , vt, and thus the probability is less than mtn−t. The
expected value of the number of such a-tuples in B0 therefore is less than

namtn−t = mtna−t.

For each such a-tuple, let us delete one of its vertices from B0, and let B
denote the resulting set. This ensures that every a-tuple of vertices of B has
at least m common neighbors and

E[|B|] > E[|B0|]−mtna−t > b.

Let us first state a simple corollary.

Theorem 3. If F is a bipartite graph such that the vertices in one of its
parts have degree at most a, then

ex(n;F ) = O(n2−1/a).

Proof. Let G be an n-vertex graph not containing F as a subgraph. Then
there is no set B ⊆ V (G) of size |F | such that each a vertices of B has at least
|F | common neighbors: Otherwise, let f be an arbitrary injective function
mapping the unrestricted part of F to B. Then, let us take one by one the
vertices v belonging to the part of F containing only vertices of degree at
most a, and choose f(v) among the common neighbors of f(NF (v)) which
are not yet contained in the image of f . Then f : V (F )→ V (G) shows that
F is a subgraph of G, which is a contradiction.

By Lemma 2 with b = m = |F | and t = a, it follows.

‖|G|‖ < (|F |+ |F |a)1/an2−1/a ≤ 2|F |n2−1/a.

Sometimes, it is useful to choose larger t, especially if we want to find a
subgraph whose size depends on n.

Lemma 4. For every c ≥ 2 and a sufficiently large n, the following claim
holds. If an n-vertex graph G has at least 3n2/c edges, then it contains the
1-subdivision of the complete graph with b

√
n/c3c vertices.

Proof. The existence of the 1-subdivision of Kp is implied by the presence
of p vertices such that any two of them have at least p +

(
p
2

)
≤ p2 common

neighbors. Hence, if an n-vertex graph G does not contain the 1-subdivision
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of Kp, then Lemma 2 (with a = 2, b = p, m = p2) implies the following
inequality for every positive integer t:

‖G‖ < (p + p2tn2−t)1/tn2−1/t = (pn−1 + p2tn1−t)1/tn2.

For p = b
√
n/c3c, we have

‖G‖ < (n−1/2c−3/2 + nc−3t)1/tn2.

If t < log cn
2 log c

, then n−1/2c−3/2 < nc−3t, and thus

‖G‖ < 2n1/tc−3n2.

Let us set t = b logn
2 log c
c, so that for sufficiently large n we have t2 ≥ log n/ log(3/2).

It follows that

‖G‖ < 2n1/tc−3n2 < 2n1/(t+1)n1/t2c−3n2 ≤ 3n2/c.

Hence, if G has at least 3n2/c edges, then it contains the 1-subdivision of the
complete graph with b

√
n/c3c vertices.

We can actually improve this result: When representing the vertex subdi-
viding the i-th edge, we do not need to have p2 common neighbors, it suffices
to have at least i common neighbors outside of B. For this purpose, let us
give a variation on Lemma 2.

Lemma 5. Let G be a 2n-vertex graph with at least n2/c edges, and let

b ≤
√
2n
4c

be a non-negative integer. Then there exists a set B ⊆ V (G) of size
b such that for every i ≥ 1, less than i pairs of vertices of B have less than i
common neighbors in V (G) \B.

Proof. Consider a partition of vertices of G into parts V1 and V2 of size n
such that at least half of the edges of G has one end in V1 and the other end
in V2 (consider a random bipartition). Let G1 be the bipartite subgraph of
G created by deleting the edges inside V1 and inside V2. By symmetry, we
can assume

∑
v∈V1

deg2
G1

(v) ≤
∑

v∈V2
deg2

G1
(v).

Let us choose vertices v1, v2 ∈ V1 uniformly independently at random
and let B0 ⊆ V2 be the set of their common neighbors. As in the proof of
Lemma 2, we have

E[|B0|] = n−2
∑
v∈V2

deg2
G1

(v) ≥ n−3
(∑
v∈V2

degG1
(v)
)2
≥ 1

4
n−3‖G‖2 ≥ n

4c2
.

For a pair T = {x1, x2} ⊆ V2 with t > 0 common neighbors in V1, let us define
w(T ) = 1/t; note that if x1, x2 ∈ B0, then t ≥ 1, since x1 and x2 are adjacent
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to v1 by the definition of B0. Let W denote the set of all pairs of vertices in
V2 that have at least one common neighbor. Let Y =

∑
T∈(B0

2 ) w(T ); then

E[Y ] =
∑
T∈W

w(T )Pr[T ⊆ B0] =
∑
T∈W

w(T )
(1/w(T ))2

n2
= n−2

∑
T∈W

w−1(T ).

Each pair of vertices of V2 contributes the number of their common neighbors
in V1 to the last sum. Hence, we can instead express it by counting for each
vertex of V1 the number of pairs of its neighbors. Therefore,

E[Y ] = n−2
∑
v∈V1

(
degG1

(v)

2

)
<

1

2n2

∑
v∈V1

deg2
G1

(v)

≤ 1

2n2

∑
v∈V2

deg2
G1

(v) = E[|B0|]/2.

Therefore, we have E[|B0| − Y ] > E[|B0|]/2, and thus there exists a choice
of B0 such that |B0| > Y + E[|B0|]/2. In particular, |B0| > E[|B0|]/2 ≥ n

8c2

and |B0| > Y . Let B be a random subset of B0 of size b. Then

E
[ ∑
T∈(B

2)

w(T )
]

=

(
b
2

)(|B0|
2

)Y ≤ b2|Y |
|B0|2

<
b2

|B0|
≤ 1.

Therefore, there exists such a set B of size b such that any two vertices of B
have a common neighbor in V1 and

∑
T∈(B

2)
w(T ) < 1. For i ≥ 2, if T ∈

(
B
2

)
is a pair of vertices with less than i common neighbors outside of B, then
w(T ) > 1/i, and thus

(
B
2

)
contains less than i such pairs.

Let T1, . . . , T(b
2)

be the pairs of vertices of B sorted according to the

number of their common neighbors outside of B. Then the vertices of Ti

have at least i common neighbors outside of B, and as we argued before, this
suffices to obtain the 1-subdivision of Kb in G.

Corollary 6. Every graph with 2n vertices and at least n2/c edges contains

the 1-subdivision of Kb for b = b
√
2n
4c
c.

The analysis of a suitably chosen random graph shows that the depen-
dence of b on c is asymptotically optimal.

Next, we aim to generalize Theorem 3 to all a-degenerate bipartite graphs.
To this end, we need a variant of Lemma 2 with two subsets such that each
a-tuple of vertices in any one of them has many common neighbors in the
other subset.
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Lemma 7. Let a,m ≥ 2 be integers and let G be an n-vertex graph with at
least 2n2− 1

8a edges, for large enough n. Then there exist sets B1, B2 ⊂ V (G)
of size at least m such that for i ∈ {1, 2}, every a-tuple of vertices of Bi has
at least m common neighbors in B3−i.

Proof. Let t = 4a, b = bn1/2c, a′ = d7a/2e. Then

‖G‖ ≥ 2n2− 1
8a ≥ (b + mtna′−t)1/tn2−1/t

for sufficiently large n. By Lemma 2, there exists a set B1 ⊆ V (G) of size at
least b ≥ m such that every a′-tuple of vertices of B1 has at least m common
neighbors.

Now choose t1 = a′ − a vertices T1 from B1 uniformly independently at
random, and let B2 be the set of their common neighbors (clearly |B2| ≥ m).
The probability that B2 contains an a-tuple of vertices with less than m
common neighbors in B1 is less than

na
(m
b

)t1
≤ na

( 2m

n1/2

)t1
= (2m)t1na−t1/2 = (2m)t1n(3a−a′)/2 ≤ (2m)t1n(3−7/2)a/2

= (2m)t1n−a/4 ≤ 1

for sufficiently large n. Therefore, there exists a choice of B2 such that each
a-tuple of vertices of B2 has at least m common neighbors in B1. Moreover,
each a-tuple of vertices in B1 can be extended to an a′-tuple by adding T1;
this a′-tuple has at least m common neighbors and by the definition all of
them belong to B2.

Corollary 8. If F is an a-degenerate bipartite graph, then

ex(n;F ) = O
(
n2− 1

8a

)
.

Proof. We apply Lemma 7 to a graph with n vertices and Ω(
(
n2− 1

8a

)
edges,

with m = |F |, obtaining sets B1 and B2. Suppose v1, . . . , v|F | are vertices
of F in the order such that for i = 1, . . . , |F |, vi has at most a neighbors in
{v1, . . . , vi−1}. Let p(i) ∈ {1, 2} be the number of the part of the bipartition
of F containing vi. Then for i = 1, . . . , |F | in order, we assign vi to a vertex in
Bp(i) chosen as the not-yet-used common neighbor of the vertices to which we
have previously assigned the preceding neighbors of vi; such a vertex exists,
since vi has at most a preceding neighbors and the corresponding (≤a)-tuple
vertices of B3−p(i) has at least |F | common neighbors in Bp(i).
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