Dependent random choice

Zdeněk Dvořák

October 23, 2020

From the first lecture:
Theorem 1. If F is a bipartite graph with one of the parts of size a, then

$$
\operatorname{ex}(n ; F)=O\left(n^{2-1 / a}\right)
$$

We want to generalize this to graphs in which one of the parts only contains vertices of degree at most a. Idea: Let us find a large set B of vertices such that every a vertices of B have many common neighbors. How to find such a set? Let us select several vertices at random and choose B as the set of their common neighbors. If some vertices of B had few common neighbors, we would have only a small probability that we hit all of them with the random choice. More precisely, this gives us the following lemma.

Lemma 2. Let G be an n-vertex graph and let a, b, m, and t be positive integers. If

$$
\|G\| \geq\left(b+m^{t} n^{a-t}\right)^{1 / t} n^{2-1 / t}
$$

then there exists a set $B \subseteq V(G)$ of size at least b such that every a vertices of B have at least m common neighbors.

Proof. Let us select the vertices v_{1}, \ldots, v_{t} uniformly independently at random, and let B_{0} be the set of their common neighbors. For every vertex v, the probability that $v \in B_{0}$, that is, that v_{1}, \ldots, v_{t} are neighbors of v, is equal to $n^{-t} \operatorname{deg}^{t}(v)$. Hence,

$$
\begin{aligned}
E\left[\left|B_{0}\right|\right] & =n^{-t} \sum_{v \in V(G)} \operatorname{deg}^{t}(v) \geq n^{1-2 t}\left(\sum_{v \in V(G)} \operatorname{deg} v\right)^{t} \\
& >n^{1-2 t}\|G\|^{t} \geq b+m^{t} n^{a-t} .
\end{aligned}
$$

What is the probability that an a-tuple u_{1}, \ldots, u_{a} of vertices with less than m common neighbors belongs to B_{0} ? We would have to hit these common
neighbors with v_{1}, \ldots, v_{t}, and thus the probability is less than $m^{t} n^{-t}$. The expected value of the number of such a-tuples in B_{0} therefore is less than

$$
n^{a} m^{t} n^{-t}=m^{t} n^{a-t} .
$$

For each such a-tuple, let us delete one of its vertices from B_{0}, and let B denote the resulting set. This ensures that every a-tuple of vertices of B has at least m common neighbors and

$$
E[|B|]>E\left[\left|B_{0}\right|\right]-m^{t} n^{a-t}>b .
$$

Let us first state a simple corollary.
Theorem 3. If F is a bipartite graph such that the vertices in one of its parts have degree at most a, then

$$
\operatorname{ex}(n ; F)=O\left(n^{2-1 / a}\right)
$$

Proof. Let G be an n-vertex graph not containing F as a subgraph. Then there is no set $B \subseteq V(G)$ of size $|F|$ such that each a vertices of B has at least $|F|$ common neighbors: Otherwise, let f be an arbitrary injective function mapping the unrestricted part of F to B. Then, let us take one by one the vertices v belonging to the part of F containing only vertices of degree at most a, and choose $f(v)$ among the common neighbors of $f\left(N_{F}(v)\right)$ which are not yet contained in the image of f. Then $f: V(F) \rightarrow V(G)$ shows that F is a subgraph of G, which is a contradiction.

By Lemma 2 with $b=m=|F|$ and $t=a$, it follows.

$$
\||G|\|<\left(|F|+|F|^{a}\right)^{1 / a} n^{2-1 / a} \leq 2|F| n^{2-1 / a} .
$$

Sometimes, it is useful to choose larger t, especially if we want to find a subgraph whose size depends on n.

Lemma 4. For every $c \geq 2$ and a sufficiently large n, the following claim holds. If an n-vertex graph G has at least $3 n^{2} / c$ edges, then it contains the 1 -subdivision of the complete graph with $\left\lfloor\sqrt{n / c^{3}}\right\rfloor$ vertices.

Proof. The existence of the 1 -subdivision of K_{p} is implied by the presence of p vertices such that any two of them have at least $p+\binom{p}{2} \leq p^{2}$ common neighbors. Hence, if an n-vertex graph G does not contain the 1 -subdivision
of K_{p}, then Lemma 2 (with $a=2, b=p, m=p^{2}$) implies the following inequality for every positive integer t :

$$
\|G\|<\left(p+p^{2 t} n^{2-t}\right)^{1 / t} n^{2-1 / t}=\left(p n^{-1}+p^{2 t} n^{1-t}\right)^{1 / t} n^{2} .
$$

For $p=\left\lfloor\sqrt{n / c^{3}}\right\rfloor$, we have

$$
\|G\|<\left(n^{-1 / 2} c^{-3 / 2}+n c^{-3 t}\right)^{1 / t} n^{2} .
$$

If $t<\frac{\log c n}{2 \log c}$, then $n^{-1 / 2} c^{-3 / 2}<n c^{-3 t}$, and thus

$$
\|G\|<2 n^{1 / t} c^{-3} n^{2} .
$$

Let us set $t=\left\lfloor\frac{\log n}{2 \log c}\right\rfloor$, so that for sufficiently large n we have $t^{2} \geq \log n / \log (3 / 2)$. It follows that

$$
\|G\|<2 n^{1 / t} c^{-3} n^{2}<2 n^{1 /(t+1)} n^{1 / t^{2}} c^{-3} n^{2} \leq 3 n^{2} / c
$$

Hence, if G has at least $3 n^{2} / c$ edges, then it contains the 1 -subdivision of the complete graph with $\left\lfloor\sqrt{n / c^{3}}\right\rfloor$ vertices.

We can actually improve this result: When representing the vertex subdividing the i-th edge, we do not need to have p^{2} common neighbors, it suffices to have at least i common neighbors outside of B. For this purpose, let us give a variation on Lemma 2.

Lemma 5. Let G be a $2 n$-vertex graph with at least n^{2} / c edges, and let $b \leq \frac{\sqrt{2 n}}{4 c}$ be a non-negative integer. Then there exists a set $B \subseteq V(G)$ of size b such that for every $i \geq 1$, less than i pairs of vertices of B have less than i common neighbors in $V(G) \backslash B$.

Proof. Consider a partition of vertices of G into parts V_{1} and V_{2} of size n such that at least half of the edges of G has one end in V_{1} and the other end in V_{2} (consider a random bipartition). Let G_{1} be the bipartite subgraph of G created by deleting the edges inside V_{1} and inside V_{2}. By symmetry, we can assume $\sum_{v \in V_{1}} \operatorname{deg}_{G_{1}}^{2}(v) \leq \sum_{v \in V_{2}} \operatorname{deg}_{G_{1}}^{2}(v)$.

Let us choose vertices $v_{1}, v_{2} \in V_{1}$ uniformly independently at random and let $B_{0} \subseteq V_{2}$ be the set of their common neighbors. As in the proof of Lemma 2, we have

$$
E\left[\left|B_{0}\right|\right]=n^{-2} \sum_{v \in V_{2}} \operatorname{deg}_{G_{1}}^{2}(v) \geq n^{-3}\left(\sum_{v \in V_{2}} \operatorname{deg}_{G_{1}}(v)\right)^{2} \geq \frac{1}{4} n^{-3}\|G\|^{2} \geq \frac{n}{4 c^{2}}
$$

For a pair $T=\left\{x_{1}, x_{2}\right\} \subseteq V_{2}$ with $t>0$ common neighbors in V_{1}, let us define $w(T)=1 / t$; note that if $x_{1}, x_{2} \in B_{0}$, then $t \geq 1$, since x_{1} and x_{2} are adjacent
to v_{1} by the definition of B_{0}. Let W denote the set of all pairs of vertices in V_{2} that have at least one common neighbor. Let $Y=\sum_{T \in\binom{B_{0}}{2}} w(T)$; then

$$
E[Y]=\sum_{T \in W} w(T) \operatorname{Pr}\left[T \subseteq B_{0}\right]=\sum_{T \in W} w(T) \frac{(1 / w(T))^{2}}{n^{2}}=n^{-2} \sum_{T \in W} w^{-1}(T) .
$$

Each pair of vertices of V_{2} contributes the number of their common neighbors in V_{1} to the last sum. Hence, we can instead express it by counting for each vertex of V_{1} the number of pairs of its neighbors. Therefore,

$$
\begin{aligned}
E[Y] & =n^{-2} \sum_{v \in V_{1}}\binom{\operatorname{deg}_{G_{1}}(v)}{2}<\frac{1}{2 n^{2}} \sum_{v \in V_{1}} \operatorname{deg}_{G_{1}}^{2}(v) \\
& \leq \frac{1}{2 n^{2}} \sum_{v \in V_{2}} \operatorname{deg}_{G_{1}}^{2}(v)=E\left[\left|B_{0}\right|\right] / 2 .
\end{aligned}
$$

Therefore, we have $E\left[\left|B_{0}\right|-Y\right]>E\left[\left|B_{0}\right|\right] / 2$, and thus there exists a choice of B_{0} such that $\left|B_{0}\right|>Y+E\left[\left|B_{0}\right|\right] / 2$. In particular, $\left|B_{0}\right|>E\left[\left|B_{0}\right|\right] / 2 \geq \frac{n}{8 c^{2}}$ and $\left|B_{0}\right|>Y$. Let B be a random subset of B_{0} of size b. Then

$$
E\left[\sum_{T \in\binom{B}{2}} w(T)\right]=\frac{\binom{b}{2}}{\binom{\left|B_{0}\right|}{2}} Y \leq \frac{b^{2}|Y|}{\left|B_{0}\right|^{2}}<\frac{b^{2}}{\left|B_{0}\right|} \leq 1 .
$$

Therefore, there exists such a set B of size b such that any two vertices of B have a common neighbor in V_{1} and $\sum_{T \in\binom{B}{2}} w(T)<1$. For $i \geq 2$, if $T \in\binom{B}{2}$ is a pair of vertices with less than i common neighbors outside of B, then $w(T)>1 / i$, and thus $\binom{B}{2}$ contains less than i such pairs.

Let $T_{1}, \ldots, T_{\binom{b}{2}}$ be the pairs of vertices of B sorted according to the number of their common neighbors outside of B. Then the vertices of T_{i} have at least i common neighbors outside of B, and as we argued before, this suffices to obtain the 1-subdivision of K_{b} in G.

Corollary 6. Every graph with $2 n$ vertices and at least n^{2} / c edges contains the 1 -subdivision of K_{b} for $b=\left\lfloor\frac{\sqrt{2 n}}{4 c}\right\rfloor$.

The analysis of a suitably chosen random graph shows that the dependence of b on c is asymptotically optimal.

Next, we aim to generalize Theorem 3 to all a-degenerate bipartite graphs. To this end, we need a variant of Lemma 2 with two subsets such that each a-tuple of vertices in any one of them has many common neighbors in the other subset.

Lemma 7. Let $a, m \geq 2$ be integers and let G be an n-vertex graph with at least $2 n^{2-\frac{1}{8 a}}$ edges, for large enough n. Then there exist sets $B_{1}, B_{2} \subset V(G)$ of size at least m such that for $i \in\{1,2\}$, every a-tuple of vertices of B_{i} has at least m common neighbors in B_{3-i}.

Proof. Let $t=4 a, b=\left\lfloor n^{1 / 2}\right\rfloor, a^{\prime}=\lceil 7 a / 2\rceil$. Then

$$
\|G\| \geq 2 n^{2-\frac{1}{8 a}} \geq\left(b+m^{t} n^{a^{\prime}-t}\right)^{1 / t} n^{2-1 / t}
$$

for sufficiently large n. By Lemma 2 , there exists a set $B_{1} \subseteq V(G)$ of size at least $b \geq m$ such that every a^{\prime}-tuple of vertices of B_{1} has at least m common neighbors.

Now choose $t_{1}=a^{\prime}-a$ vertices T_{1} from B_{1} uniformly independently at random, and let B_{2} be the set of their common neighbors (clearly $\left|B_{2}\right| \geq m$). The probability that B_{2} contains an a-tuple of vertices with less than m common neighbors in B_{1} is less than

$$
\begin{aligned}
n^{a}\left(\frac{m}{b}\right)^{t_{1}} & \leq n^{a}\left(\frac{2 m}{n^{1 / 2}}\right)^{t_{1}} \\
& =(2 m)^{t_{1}} n^{a-t_{1} / 2}=(2 m)^{t_{1}} n^{\left(3 a-a^{\prime}\right) / 2} \leq(2 m)^{t_{1}} n^{(3-7 / 2) a / 2} \\
& =(2 m)^{t_{1}} n^{-a / 4} \leq 1
\end{aligned}
$$

for sufficiently large n. Therefore, there exists a choice of B_{2} such that each a-tuple of vertices of B_{2} has at least m common neighbors in B_{1}. Moreover, each a-tuple of vertices in B_{1} can be extended to an a^{\prime}-tuple by adding T_{1}; this a^{\prime}-tuple has at least m common neighbors and by the definition all of them belong to B_{2}.

Corollary 8. If F is an a-degenerate bipartite graph, then

$$
\operatorname{ex}(n ; F)=O\left(n^{2-\frac{1}{8 a}}\right)
$$

Proof. We apply Lemma 7 to a graph with n vertices and $\Omega\left(\left(n^{2-\frac{1}{8 a}}\right)\right.$ edges, with $m=|F|$, obtaining sets B_{1} and B_{2}. Suppose $v_{1}, \ldots, v_{|F|}$ are vertices of F in the order such that for $i=1, \ldots,|F|, v_{i}$ has at most a neighbors in $\left\{v_{1}, \ldots, v_{i-1}\right\}$. Let $p(i) \in\{1,2\}$ be the number of the part of the bipartition of F containing v_{i}. Then for $i=1, \ldots,|F|$ in order, we assign v_{i} to a vertex in $B_{p(i)}$ chosen as the not-yet-used common neighbor of the vertices to which we have previously assigned the preceding neighbors of v_{i}; such a vertex exists, since v_{i} has at most a preceding neighbors and the corresponding ($\leq a$)-tuple vertices of $B_{3-p(i)}$ has at least $|F|$ common neighbors in $B_{p(i)}$.

