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From the first lecture:

Theorem 1. If F is bipartite and one of its parts has size a, then

ex(n;F ) = O(n2−1/a).

A probabilistic lower bound:

Lemma 2. For all integers a and b such that 2 ≤ a ≤ b and for sufficiently
large n, we have

ex(n;Ka,b) ≥
1

24
n2−β,

where

β =
a+ b− 2

ab− 1
.

Proof. Let G0 be a random graph on n vertices containing each edge inde-
pendently with probability p = 1

2
n−β. Then

E[‖G0‖] = p

(
n

2

)
≥ p

3
n2 =

1

6
n2−β.

Let t be the number of appearances of Ka,b in G0. We have

E[t] ≤ na+bpab ≤ 1

8
n2−β

Let G be the graph obtained from G0 by deleting an edge from every appear-
ance of Ka,b. Then G does not contain Ka,b as a subgraph and

E[‖G‖] ≥ E[‖G0‖]− E[t] ≥ 1

24
n2−β.
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Remark: β = 1/a+ (a−1)2
a(ab−1) > 1/a.

We now aim to prove a tight bound for K3,3, and more generally for Ka,b

with b� a.
Let p be a prime and m a positive integer. For x ∈ GF (pm), let us define

the norm of x as N(x) = x · xp · xp2 · · ·xpm−1
.

Lemma 3. The norm has the following properties.

• N(xy) = N(x)N(y) for every x, y ∈ GF (pm).

• N(x) = 0 if and only if x = 0.

• N(x) ∈ GF (p) for every x ∈ GF (pm).

Proof. The first two properties are trivial. In GF (pm), we have xp
m

= x for
every x ∈ GF (pm), and thus N(x)p = N(x). The roots of the polynomial
yp − y are exactly the elements of GF [p], and thus N(x) ∈ GF [p].

Let us now define a graph Hp,m. The vertices of Hp,m are the pairs (x, y)
for x ∈ GF (pm) and y ∈ GF (p) \ {0}; the vertices (x1, y1) and (x2, y2) are
adjacent if and only if N(x1 + x2) = y1y2. For every (x1, y1) and x2 6= −x1,
the neighbor (x2, y2) with the first element of the pair equal to x2 is uniquely
determined: It must be y2 = y1/N(x1 + x2). Therefore, the graph Hp,m is
(pm − 1)-regular. Furthermore, Hp,m has n = pm(p− 1) vertices and

‖Hp,m‖ =
1

2
(pm − 1)n =

1

2
n2− 1

m+1 +
m

2(m+ 1)
n2− 2

m+1 +O
(
n2− 3

m+1

)
.

Theorem 4. The graph Hp,1 does not contain K2,2 as a subgraph, and thus
for every b ≥ 2, we have

ex(n;K2,b) ≥
1

2
n3/2 +

1

4
n+O(n1/2)

for infinitely many values of n.

Proof. For m = 1 we have N(x) = x. A common neighbor (x, y) of vertices
(a1, b1) 6= (a2, b2) must satisfy the equations

x+ a1 = b1y

x+ a2 = b2y.

Substituting for y from the first equation to the second one, we have

x+ a2 =
b2
b1

(x+ a1),
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and thus
(1− b2/b1)x = a1b2/b1 − a2.

If b1 6= b2, then this equation has a unique solution giving x, and x then
uniquely determines y. If b1 = b2, then a1 6= a2 and the right-hand side is
non-zero, and thus the equation has no solution.

Therefore, the system has at most one solution. It follows that any two
vertices have at most one common neighbor, and thus the graph does not
contain K2,2 as a subgraph.

Theorem 5. The graph Hp,2 does not contain K3,3 as a subgraph, and thus
for every b ≥ 3, we have

ex(n;K3,b) ≥
1

2
n5/3 +

1

3
n4/3 +O(n)

for infinitely many values of n.

Proof. A common neighbor (x, y) of distinct vertices (a1, b1), (a2, b2), and
(a3, b3) must satisfy the following equations.

N(x+ a1) = b1y

N(x+ a2) = b2y

N(x+ a3) = b3y.

If this system has a solution, then a1, a2, and a3 are pairwise distinct (ai = aj
would imply bi = bj, contradicting the assumption (ai, bi) 6= (aj, bj)).

Substitute for y from the first equation to the second and third one, and
divide the resulting equations by N(ai − a1) for i = 2, 3. We obtain the
following system.

N(1/(x+ a1) + (a2 − a1)−1) =
b2

b1N(a2 − a1)

N(1/(x+ a1) + (a3 − a1)−1) =
b3

b1N(a3 − a1)
Therefore, it suffices to prove that if c2 6= c3, then any system of form

N(z + c2) = d2

N(z + c3) = d3

has at most two solutions. Note that N(z + ci) = (z + ci)(z + ci)
p = (z +

ci)(z
p + cpi ). Therefore, it suffices to show that if c2 6= c3 and c′2 6= c′3, then

the system of equations (with unknowns z and z′)

(z + c2)(z
′ + c′2) = d2

(z + c3)(z
′ + c′3) = d3
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has at most two solutions. Indeed, subtracting the equations, we obtain

z′ =
1

c2 − c3
((c′3 − c′2)z + d2 − d3 + c3c

′
3 − c2c′2),

and thus z uniquely determines z′. Substituting to the first equation, we
obtain the following quadratic equation for z:

c′3 − c′2
c2 − c3

z2 + k1z + k2 = 0

Since the coefficient at z2 is non-zero, the equation has at most two solutions.

For the general case, we use the following claim without proof.

Theorem 6. In every field, the system

(z1 − a1,1)(z2 − a1,2) · · · (zt − a1,t) = b1

(z1 − a2,1)(z2 − a2,2) · · · (zt − a2,t) = b2

· · ·
(z1 − at,1)(z2 − at,2) · · · (zt − at,t) = bt

such that ai,j 6= ai′,j for every i 6= i′ and j, has at most t! solutions.

Remark: to see why this is plausible, consider the case b1 = . . . = bt = 0.
Similarly to Theorem 5, we can then prove the following result.

Theorem 7. The graph Hp,m does not contain Km+1,m!+1 as a subgraph, and
thus for every b ≥ m! + 1 we have

ex(n;Km+1,b) ≥
1

2
n2− 1

m+1 +
m

2(m+ 1)
n2− 2

m+1 +O
(
n2− 3

m+1

)
for infinitely many values of n.
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