Erdős-Stone theorem

Zdeněk Dvořák

October 7, 2020

We will often need the following technical lemma, which enables us to get rid of vertices of small degree.

Lemma 1. For every $c \ge 0$, $\varepsilon > 0$ and sufficiently large n, if G is an n-vertex graph and $||G|| \ge (c + \varepsilon)\frac{n^2}{2}$, then G has an induced subgraph G_0 with $n_0 \ge \sqrt{\varepsilon/4} \cdot n$ vertices and minimum degree at least $(c + \varepsilon/2)n_0$.

Proof. Without loss of generality, we can assume $c + \varepsilon \leq 1$, as otherwise the assumptions cannot hold for any graph G. Consider the induced subgraph G_0 obtained by the following algorithm. Initialize $G_0 := G$, and while there exists $v \in V(G_0)$ of degree less than $(c + \varepsilon/2)|G_0|$, set $G_0 := G_0 - v$.

Let $n_0 = |G_0|$. Clearly G_0 has minimum degree at least $(c + \varepsilon/2)n_0$. Moreover,

$$|G|| \le ||G_0|| + (c + \varepsilon/2) \sum_{a=n_0+1}^n a$$
$$\le {\binom{n_0}{2}} + (c + \varepsilon/2) \sum_{a=1}^n a$$
$$\le \frac{n_0^2}{2} + (c + \varepsilon/2) \frac{n^2 + n}{2}.$$

Since $||G|| \ge (c + \varepsilon)\frac{n^2}{2}$ and $c + \varepsilon/2 < 1$, we have

$$\frac{n_0^2}{2} \ge \frac{\varepsilon}{2} \cdot \frac{n^2}{2} - \frac{n}{2}$$
$$\ge \frac{\varepsilon}{4} \cdot \frac{n^2}{2}$$

for $n \ge 4/\varepsilon$, and thus $n_0 \ge \sqrt{\varepsilon/4} \cdot n$.

In particular, Lemma 1 implies that it suffices to prove Erdős-Stone theorem only for graphs with large minimum degree.

Lemma 2. For every integer $r \ge 1$ and a real number $\beta > 0$, every n-vertex graph of minimum degree at least $(1 - 1/r + \beta)n$ contains $T_{r+1}(\Omega(\log n))$ as a subgraph.

Proof. We prove the claim by induction on r. Note that G contains $T_r(mr)$ as a subgraph for some integer $m = \Theta(\log n)$ (for $r \ge 2$ this follows by the induction hypothesis, while for r = 1 this is trivial); let K be the vertex set of this subgraph. Without loss of generality, we can assume

- $n \gg r, 1/\beta$, since otherwise $1 = \Omega(\log n)$ and trivially $T_{r+1}(1) \subseteq G$;
- $|K| = mr \leq \frac{1}{2}\log_2 n.$

Let $U \subseteq V(G) \setminus K$ be the set of vertices with more than $(1-1/r+\beta/2)|K|$ neighbors in K. Let q be the number of edges of G between K and $V(G) \setminus K$. Since G has minimum degree at least $(1-1/r+\beta)n$, we have

$$q \ge |K| \big((1 - 1/r + \beta)n - |K| \big).$$

On the other hand, the vertices not belonging to U have at most $(1 - 1/r + \beta/2)|K|$ neighbors in K, and thus

$$q \le |U||K| + (1 - 1/r + \beta/2)n|K| = |K|((1 - 1/r + \beta/2)n + |U|).$$

Therefore $|U| \ge \frac{\beta}{2}n - |K|$, and since $|K| = \Theta(\log n)$, assuming *n* is sufficiently large, we have $|U| \ge \frac{\beta}{3}n$.

Every vertex $u \in U$ has less than $(1/r - \beta/2)|K| \leq m - (\beta r/2) \cdot m$ nonneighbors in K, and thus u has more than $m' = \lfloor (\beta r/2) \cdot m \rfloor$ neighbors in each part of the r-partite subgraph $T_r(mr)$ with vertex set K; hence, this $T_r(mr)$ contains a subgraph $T_r(m'r)$ with vertex set K_u such that u is adjacent to all vertices of K_u in G. The number of distinct subgraphs of $T_r(m'r)$ in $T_r(mr)$ is at most $2^{mr} \leq \sqrt{n}$. Therefore, there exists such a subgraph with vertex set Z such that $K_u = Z$ holds for at least $|U|/\sqrt{n} \geq \frac{\beta}{3}\sqrt{n}$ vertices $u \in U$. Since $m' = \Theta(\log n)$, for sufficiently large n we have $\frac{\beta}{3}\sqrt{n} \geq m'$. Then Z together with the vertices $u \in U$ such that $K_u = Z$ forms a subgraph $T_{r+1}(m'(r+1))$ in G. \Box

Corollary 3 (Erdős-Stone). For every integer $r \ge 1$ and real number $\varepsilon > 0$, every n-vertex graph with at least $(1-1/r+\varepsilon)\frac{n^2}{2}$ edges contains $T_{r+1}(\Omega(\log n))$ as a subgraph. **Corollary 4.** For every integer $r \ge 1$ and $\varepsilon > 0$, there exists c such that

$$\operatorname{ex}(n;F) \le (1 - 1/r + \varepsilon)\frac{n^2}{2}$$

for every graph F with chromatic number greater than r and for every $n \ge c^{|F|}$.

The assumption that $n \ge \exp(|F|)$ cannot be eliminated.

Lemma 5. For every positive real number $\varepsilon \leq 1/20$ and every integer $m \geq 2$, there exists a graph with $n = \lfloor \left(\frac{1}{2\varepsilon}\right)^{m/2} \rfloor$ vertices and at least $\varepsilon \frac{n^2}{2}$ edges not containing $K_{m,m}$ as a subgraph.

Proof. Let G be a random n-vertex graph in which every pair forms an edge independently with probability $p = 2\varepsilon$. We have

$$\mathbb{E}[\|G\|] = p\binom{n}{2}.$$

Let t be the number of appearances of $K_{m,m}$ in G. We have

$$\mathbb{E}[t] \le {\binom{n}{m}}^2 p^{m^2} \le n^{2m} p^{m^2} = {\binom{n^2 p^m}{m}}^m \le 1.$$

Let G' be the graph obtained from G by deleting one edge from every $K_{m,m}$ subgraph. Then G' avoids $K_{m,m}$ and

$$\mathbb{E}[\|G'\|] \ge \mathbb{E}[\|G\| - t] \ge p\binom{n}{2} - 1 = p\frac{n^2}{2} - p\frac{n}{2} - 1 \ge \varepsilon \frac{n^2}{2}.$$