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We will often need the following technical lemma, which enables us to get
rid of vertices of small degree.

Lemma 1. For every c ≥ 0, ε > 0 and sufficiently large n, if G is an n-
vertex graph and ‖G‖ ≥ (c + ε)n

2

2
, then G has an induced subgraph G0 with

n0 ≥
√
ε/4 · n vertices and minimum degree at least (c+ ε/2)n0.

Proof. Without loss of generality, we can assume c+ ε ≤ 1, as otherwise the
assumptions cannot hold for any graph G. Consider the induced subgraph
G0 obtained by the following algorithm. Initialize G0 := G, and while there
exists v ∈ V (G0) of degree less than (c+ ε/2)|G0|, set G0 := G0 − v.

Let n0 = |G0|. Clearly G0 has minimum degree at least (c + ε/2)n0.
Moreover,

‖G‖ ≤ ‖G0‖+ (c+ ε/2)
n∑

a=n0+1

a

≤
(
n0

2

)
+ (c+ ε/2)

n∑
a=1

a

≤ n2
0

2
+ (c+ ε/2)

n2 + n

2
.

Since ‖G‖ ≥ (c+ ε)n
2

2
and c+ ε/2 < 1, we have

n2
0

2
≥ ε

2
· n

2

2
− n

2

≥ ε

4
· n

2

2

for n ≥ 4/ε, and thus n0 ≥
√
ε/4 · n.
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In particular, Lemma 1 implies that it suffices to prove Erdős-Stone the-
orem only for graphs with large minimum degree.

Lemma 2. For every integer r ≥ 1 and a real number β > 0, every n-vertex
graph of minimum degree at least (1− 1/r + β)n contains Tr+1(Ω(log n)) as
a subgraph.

Proof. We prove the claim by induction on r. Note that G contains Tr(mr)
as a subgraph for some integer m = Θ(log n) (for r ≥ 2 this follows by the
induction hypothesis, while for r = 1 this is trivial); let K be the vertex set
of this subgraph. Without loss of generality, we can assume

• n� r, 1/β, since otherwise 1 = Ω(log n) and trivially Tr+1(1) ⊆ G;

• |K| = mr ≤ 1
2

log2 n.

Let U ⊆ V (G)\K be the set of vertices with more than (1−1/r+β/2)|K|
neighbors in K. Let q be the number of edges of G between K and V (G)\K.
Since G has minimum degree at least (1− 1/r + β)n, we have

q ≥ |K|
(
(1− 1/r + β)n− |K|

)
.

On the other hand, the vertices not belonging to U have at most (1− 1/r +
β/2)|K| neighbors in K, and thus

q ≤ |U ||K|+ (1− 1/r + β/2)n|K| = |K|
(
(1− 1/r + β/2)n+ |U |).

Therefore |U | ≥ β
2
n−|K|, and since |K| = Θ(log n), assuming n is sufficiently

large, we have |U | ≥ β
3
n.

Every vertex u ∈ U has less than (1/r − β/2)|K| ≤ m− (βr/2) ·m non-
neighbors in K, and thus u has more than m′ = b(βr/2)·mc neighbors in each
part of the r-partite subgraph Tr(mr) with vertex set K; hence, this Tr(mr)
contains a subgraph Tr(m

′r) with vertex set Ku such that u is adjacent to all
vertices of Ku in G. The number of distinct subgraphs of Tr(m

′r) in Tr(mr)
is at most 2mr ≤

√
n. Therefore, there exists such a subgraph with vertex set

Z such that Ku = Z holds for at least |U |/
√
n ≥ β

3

√
n vertices u ∈ U . Since

m′ = Θ(log n), for sufficiently large n we have β
3

√
n ≥ m′. Then Z together

with the vertices u ∈ U such that Ku = Z forms a subgraph Tr+1(m
′(r+ 1))

in G.

Corollary 3 (Erdős-Stone). For every integer r ≥ 1 and real number ε > 0,
every n-vertex graph with at least (1−1/r+ε)n

2

2
edges contains Tr+1(Ω(log n))

as a subgraph.
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Corollary 4. For every integer r ≥ 1 and ε > 0, there exists c such that

ex(n;F ) ≤ (1− 1/r + ε)
n2

2

for every graph F with chromatic number greater than r and for every n ≥
c|F |.

The assumption that n ≥ exp(|F |) cannot be eliminated.

Lemma 5. For every positive real number ε ≤ 1/20 and every integer m ≥ 2,

there exists a graph with n =
⌊(

1
2ε

)m/2⌋
vertices and at least εn

2

2
edges not

containing Km,m as a subgraph.

Proof. Let G be a random n-vertex graph in which every pair forms an edge
independently with probability p = 2ε. We have

E[‖G‖] = p

(
n

2

)
.

Let t be the number of appearances of Km,m in G. We have

E[t] ≤
(
n

m

)2

pm
2 ≤ n2mpm

2

=
(
n2pm

)m
≤ 1.

Let G′ be the graph obtained from G by deleting one edge from every Km,m

subgraph. Then G′ avoids Km,m and

E[‖G′‖] ≥ E[‖G‖ − t] ≥ p

(
n

2

)
− 1 = p

n2

2
− pn

2
− 1 ≥ ε

n2

2
.
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