Erdős-Stone theorem

Zdeněk Dvořák

October 7, 2020

We will often need the following technical lemma, which enables us to get rid of vertices of small degree.

Lemma 1. For every $c \geq 0, \varepsilon>0$ and sufficiently large n, if G is an n vertex graph and $\|G\| \geq(c+\varepsilon) \frac{n^{2}}{2}$, then G has an induced subgraph G_{0} with $n_{0} \geq \sqrt{\varepsilon / 4} \cdot n$ vertices and minimum degree at least $(c+\varepsilon / 2) n_{0}$.

Proof. Without loss of generality, we can assume $c+\varepsilon \leq 1$, as otherwise the assumptions cannot hold for any graph G. Consider the induced subgraph G_{0} obtained by the following algorithm. Initialize $G_{0}:=G$, and while there exists $v \in V\left(G_{0}\right)$ of degree less than $(c+\varepsilon / 2)\left|G_{0}\right|$, set $G_{0}:=G_{0}-v$.

Let $n_{0}=\left|G_{0}\right|$. Clearly G_{0} has minimum degree at least $(c+\varepsilon / 2) n_{0}$. Moreover,

$$
\begin{aligned}
\|G\| & \leq\left\|G_{0}\right\|+(c+\varepsilon / 2) \sum_{a=n_{0}+1}^{n} a \\
& \leq\binom{ n_{0}}{2}+(c+\varepsilon / 2) \sum_{a=1}^{n} a \\
& \leq \frac{n_{0}^{2}}{2}+(c+\varepsilon / 2) \frac{n^{2}+n}{2} .
\end{aligned}
$$

Since $\|G\| \geq(c+\varepsilon) \frac{n^{2}}{2}$ and $c+\varepsilon / 2<1$, we have

$$
\begin{aligned}
\frac{n_{0}^{2}}{2} & \geq \frac{\varepsilon}{2} \cdot \frac{n^{2}}{2}-\frac{n}{2} \\
& \geq \frac{\varepsilon}{4} \cdot \frac{n^{2}}{2}
\end{aligned}
$$

for $n \geq 4 / \varepsilon$, and thus $n_{0} \geq \sqrt{\varepsilon / 4} \cdot n$.

In particular, Lemma 1 implies that it suffices to prove Erdős-Stone theorem only for graphs with large minimum degree.

Lemma 2. For every integer $r \geq 1$ and a real number $\beta>0$, every n-vertex graph of minimum degree at least $(1-1 / r+\beta) n$ contains $T_{r+1}(\Omega(\log n))$ as a subgraph.

Proof. We prove the claim by induction on r. Note that G contains $T_{r}(m r)$ as a subgraph for some integer $m=\Theta(\log n)$ (for $r \geq 2$ this follows by the induction hypothesis, while for $r=1$ this is trivial); let K be the vertex set of this subgraph. Without loss of generality, we can assume

- $n \gg r, 1 / \beta$, since otherwise $1=\Omega(\log n)$ and trivially $T_{r+1}(1) \subseteq G$;
- $|K|=m r \leq \frac{1}{2} \log _{2} n$.

Let $U \subseteq V(G) \backslash K$ be the set of vertices with more than $(1-1 / r+\beta / 2)|K|$ neighbors in K. Let q be the number of edges of G between K and $V(G) \backslash K$. Since G has minimum degree at least $(1-1 / r+\beta) n$, we have

$$
q \geq|K|((1-1 / r+\beta) n-|K|) .
$$

On the other hand, the vertices not belonging to U have at most ($1-1 / r+$ $\beta / 2)|K|$ neighbors in K, and thus

$$
q \leq|U||K|+(1-1 / r+\beta / 2) n|K|=|K|((1-1 / r+\beta / 2) n+|U|) .
$$

Therefore $|U| \geq \frac{\beta}{2} n-|K|$, and since $|K|=\Theta(\log n)$, assuming n is sufficiently large, we have $|U| \geq \frac{\beta}{3} n$.

Every vertex $u \in U$ has less than $(1 / r-\beta / 2)|K| \leq m-(\beta r / 2) \cdot m$ nonneighbors in K, and thus u has more than $m^{\prime}=\lfloor(\beta r / 2) \cdot m\rfloor$ neighbors in each part of the r-partite subgraph $T_{r}(m r)$ with vertex set K; hence, this $T_{r}(m r)$ contains a subgraph $T_{r}\left(m^{\prime} r\right)$ with vertex set K_{u} such that u is adjacent to all vertices of K_{u} in G. The number of distinct subgraphs of $T_{r}\left(m^{\prime} r\right)$ in $T_{r}(m r)$ is at most $2^{m r} \leq \sqrt{n}$. Therefore, there exists such a subgraph with vertex set Z such that $K_{u}=Z$ holds for at least $|U| / \sqrt{n} \geq \frac{\beta}{3} \sqrt{n}$ vertices $u \in U$. Since $m^{\prime}=\Theta(\log n)$, for sufficiently large n we have $\frac{\beta}{3} \sqrt{n} \geq m^{\prime}$. Then Z together with the vertices $u \in U$ such that $K_{u}=Z$ forms a subgraph $T_{r+1}\left(m^{\prime}(r+1)\right)$ in G.

Corollary 3 (Erdős-Stone). For every integer $r \geq 1$ and real number $\varepsilon>0$, every n-vertex graph with at least $(1-1 / r+\varepsilon) \frac{n^{2}}{2}$ edges contains $T_{r+1}(\Omega(\log n))$ as a subgraph.

Corollary 4. For every integer $r \geq 1$ and $\varepsilon>0$, there exists c such that

$$
\operatorname{ex}(n ; F) \leq(1-1 / r+\varepsilon) \frac{n^{2}}{2}
$$

for every graph F with chromatic number greater than r and for every $n \geq$ $c^{|F|}$.

The assumption that $n \geq \exp (|F|)$ cannot be eliminated.
Lemma 5. For every positive real number $\varepsilon \leq 1 / 20$ and every integer $m \geq 2$, there exists a graph with $n=\left\lfloor\left(\frac{1}{2 \varepsilon}\right)^{m / 2}\right\rfloor$ vertices and at least $\varepsilon \frac{n^{2}}{2}$ edges not containing $K_{m, m}$ as a subgraph.

Proof. Let G be a random n-vertex graph in which every pair forms an edge independently with probability $p=2 \varepsilon$. We have

$$
\mathbb{E}[\|G\|]=p\binom{n}{2} .
$$

Let t be the number of appearances of $K_{m, m}$ in G. We have

$$
\mathbb{E}[t] \leq\binom{ n}{m}^{2} p^{m^{2}} \leq n^{2 m} p^{m^{2}}=\left(n^{2} p^{m}\right)^{m} \leq 1
$$

Let G^{\prime} be the graph obtained from G by deleting one edge from every $K_{m, m}$ subgraph. Then G^{\prime} avoids $K_{m, m}$ and

$$
\mathbb{E}\left[\left\|G^{\prime}\right\|\right] \geq \mathbb{E}[\|G\|-t] \geq p\binom{n}{2}-1=p \frac{n^{2}}{2}-p \frac{n}{2}-1 \geq \varepsilon \frac{n^{2}}{2} .
$$

