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We will often need the following technical lemma, which enables us to get
rid of vertices of small degree.

Lemma 1. For every ¢ > 0, € > 0 and sufficiently large n, if G is an n-
vertex graph and |G| > (¢ + 8)%2, then G has an induced subgraph Gy with

no > +/€/4 - n vertices and minimum degree at least (¢ + £/2)ny.

Proof. Without loss of generality, we can assume ¢+ ¢ < 1, as otherwise the
assumptions cannot hold for any graph G. Consider the induced subgraph
Gy obtained by the following algorithm. Initialize Gy := G, and while there
exists v € V(Gy) of degree less than (¢ + £/2)|Gyl, set Gy := Gy — v.

Let ng = |Go|. Clearly Gy has minimum degree at least (¢ + £/2)ny.
Moreover,
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Since |G| > (c—i—es)%2 and ¢+ ¢/2 < 1, we have
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for n > 4/e, and thus ng > \/¢/4 - n. O



In particular, Lemma 1 implies that it suffices to prove Erdds-Stone the-
orem only for graphs with large minimum degree.

Lemma 2. For every integer r > 1 and a real number 5 > 0, every n-vertex
graph of minimum degree at least (1 — 1/r + B)n contains T,1(2(logn)) as
a subgraph.

Proof. We prove the claim by induction on r. Note that G contains T,.(mr)
as a subgraph for some integer m = O(logn) (for r > 2 this follows by the
induction hypothesis, while for = 1 this is trivial); let K be the vertex set
of this subgraph. Without loss of generality, we can assume

e n>r 1/f, since otherwise 1 = Q(logn) and trivially T,,1(1) C G;
o |K|=mr < 3log,n.

Let U C V(G)\ K be the set of vertices with more than (1—1/r+5/2)| K|
neighbors in K. Let ¢ be the number of edges of G between K and V(G)\ K.
Since G has minimum degree at least (1 — 1/r + §)n, we have

¢ > |K|((1=1/r+ B)n — |K]).

On the other hand, the vertices not belonging to U have at most (1 —1/r +
B/2)|K| neighbors in K, and thus

¢ < |UIIK|+ (1= 1/r+B/2)n|K| = |K|((1 = 1/r+ B/2)n + |U]).

Therefore |U| > gn— | K|, and since |K| = ©(log n), assuming n is sufficiently
large, we have |U| > gn

Every vertex u € U has less than (1/r — 5/2)|K| < m — (fr/2) - m non-
neighbors in K, and thus « has more than m’ = [ (r/2)-m| neighbors in each
part of the r-partite subgraph T, (mr) with vertex set K’; hence, this T,.(mr)
contains a subgraph T,.(m'r) with vertex set K, such that u is adjacent to all
vertices of K, in G. The number of distinct subgraphs of T,.(m/r) in T,.(mr)
is at most 2™ < y/n. Therefore, there exists such a subgraph with vertex set
Z such that K, = Z holds for at least |U|/\/n > §\/ﬁ vertices u € U. Since
m’ = O(logn), for sufficiently large n we have g\/ﬁ > m/. Then Z together
with the vertices u € U such that K, = Z forms a subgraph 7,1 (m/(r + 1))
in G. [l

Corollary 3 (Erdés-Stone). For every integer v > 1 and real number e > 0,
. 2 .

every n-vertex graph with at least (1—1/r+¢)% edges contains T,41(2(logn))

as a subgraph.



Corollary 4. For every integer r > 1 and € > 0, there exists ¢ such that

ex(n; F) < (1 — 1/7"—!—5)%

for every graph F' with chromatic number greater than r and for every n >
|F|
crl.

The assumption that n > exp(|F|) cannot be eliminated.

Lemma 5. For every positive real number e < 1/20 and every integer m > 2,

i)mﬂj vertices and at least 5%2 edges not

there exists a graph with n = L(gg

containing KKy, ., as a subgraph.

Proof. Let G be a random n-vertex graph in which every pair forms an edge
independently with probability p = 2¢. We have

Bl = ().

Let ¢ be the number of appearances of K,,,, in G. We have
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Let G’ be the graph obtained from G by deleting one edge from every K, ,,
subgraph. Then G’ avoids K, ,, and
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