Introduction and revision

Zdeněk Dvořák

October 9, 2020

Notation: $|G|$ number of vertices of $G,\|G\|$ number of edges of G.
Definition 1. Maximum number of edges of a graph with n vertices that does not contain any subgraph isomorphic to F_{1}, \ldots, F_{m} :

$$
\operatorname{ex}\left(n ; F_{1}, \ldots, F_{m}\right)
$$

Density version:

$$
\overline{\operatorname{ex}}\left(n ; F_{1}, \ldots, F_{m}\right)=\frac{\operatorname{ex}\left(n ; F_{1}, \ldots, F_{m}\right)}{\binom{n}{2}}
$$

Asymptotic density:

$$
\overline{\mathrm{ex}}\left(\infty ; F_{1}, \ldots, F_{m}\right)=\inf \left\{\overline{\operatorname{ex}}\left(n ; F_{1}, \ldots, F_{m}\right): n \in \mathbb{N}\right\} .
$$

Lemma 2. If $n_{1} \geq n_{2}$, then $\overline{\operatorname{ex}}\left(n_{1} ; F_{1}, \ldots, F_{m}\right) \leq \overline{\operatorname{ex}}\left(n_{2} ; F_{1}, \ldots, F_{m}\right)$.
Proof. Let G be a graph on n_{1} vertices not containing F_{1}, \ldots, F_{n} and having exactly ex $\left(n_{1} ; F_{1}, \ldots, F_{m}\right)$ edges. Let us first randomly uniformly choose $X \subseteq V(G)$ of size n_{2}, and then an arbitrary unordered pair $x y$ of elements of X. Clearly, every pair of vertices of G has the same probability $1 /\binom{n}{2}$ to be chosen as $x y$, and thus the probability that $x y$ is an edge of G is

$$
p=\frac{\|G\|}{\binom{n}{2}}=\overline{\operatorname{ex}}\left(n_{1} ; F_{1}, \ldots, F_{m}\right) .
$$

On the other hand, $G[X]$ has at most ex $\left(n_{2} ; F_{1}, \ldots, F_{m}\right)$ edges, and thus the probability that $x y$ is an edge of $G[X]$ is

$$
p_{X}=\frac{\|G[X]\|}{\binom{n_{2}}{2}} \leq \frac{\operatorname{ex}\left(n_{2} ; F_{1}, \ldots, F_{m}\right)}{\binom{n_{2}}{2}}=\overline{\operatorname{ex}}\left(n_{2} ; F_{1}, \ldots, F_{m}\right) .
$$

Consequently,

$$
\overline{\operatorname{ex}}\left(n_{1} ; F_{1}, \ldots, F_{m}\right)=p \leq \max \left\{p_{X}: X \in\binom{V(G)}{n_{2}}\right\} \leq \overline{\operatorname{ex}}\left(n_{2} ; F_{1}, \ldots, F_{m}\right)
$$

Corollary 3.

$$
\overline{\mathrm{ex}}\left(\infty ; F_{1}, \ldots, F_{m}\right)=\lim _{n \rightarrow \infty} \overline{\operatorname{ex}}\left(n ; F_{1}, \ldots, F_{m}\right),
$$

and for every n_{0} we have

$$
\overline{\mathrm{ex}}\left(\infty ; F_{1}, \ldots, F_{m}\right) \leq \overline{\mathrm{ex}}\left(n_{0} ; F_{1}, \ldots, F_{m}\right)
$$

Asymptotically, for $n \rightarrow \infty$, we have

$$
\operatorname{ex}\left(n ; F_{1}, \ldots, F_{m}\right)=\left(\overline{\operatorname{ex}}\left(\infty ; F_{1}, \ldots, F_{m}\right)+o(1)\right) \frac{n^{2}}{2}
$$

Example 4. Every 5-vertex graph without C_{3} and C_{4} has at most 5 edges, i.e. $\overline{\operatorname{ex}}\left(5 ; C_{3}, C_{4}\right)=1 / 2$. Therefore, $\operatorname{ex}\left(n ; C_{3}, C_{4}\right) \leq \frac{1}{2}\binom{n}{2}$ for every $n \geq 5$ and $\overline{\mathrm{ex}}\left(\infty ; C_{3}, C_{4}\right) \leq 1 / 2$.

Remark: As we will see below, $\overline{\mathrm{ex}}\left(\infty ; C_{3}, C_{4}\right)=0$ and $\operatorname{ex}\left(n ; C_{3}, C_{4}\right)=$ $\Theta\left(n^{3 / 2}\right)$.

Lemma 5. If T is a forest on $k \geq 3$ vertices, then $\operatorname{ex}(n ; T)<(k-2) n$.
Proof. Suppose for a contradiction that a graph G with $n \geq 1$ vertices and at least $(k-2) n$ edges avoids T, and let us choose such a graph with n minimum. Since $\|G\|>0$, we have $n \geq 2$. The minimality of $|G|$ implies that G has minimum degree at least $k-1$ (we could delete vertices of degree at most $k-2$ to obtain a smaller counterexample). If H is an arbitrary subgraph of G with less than k vertices, then every vertex of H has a neighbor outside of $V(H)$. Therefore, we can obtain a subgraph isomorphic to T by adding leaves one by one, which is a contradiction.

Turán graph $T_{r}(n)$: r-partite graph with n vertices, where the size of any two parts differs by at most 1 . Let us define $t_{r}(n)=\left\|T_{r}(n)\right\|$.

Observation 6.

$$
t_{r}(n) \leq(1-1 / r) \frac{n^{2}}{2}
$$

with equality iff $r \mid n$.

$$
t_{r}(n) \geq(1-1 / r) \frac{n^{2}}{2}-\frac{r}{8}
$$

with equality iff r is even and $n \equiv r / 2(\bmod r)$.

Theorem 7 (Turán theorem). For every integer $r \geq 1$, we have

$$
\operatorname{ex}\left(n ; K_{r+1}\right)=t_{r}(n),
$$

and thus $\overline{\operatorname{ex}}\left(\infty ; K_{r+1}\right)=1-1 / r$. Moreover, suppose G is a graph with n vertices and with clique number at most r. If $\|G\|=t_{r}(n)$, then G is isomorphic to $T_{r}(n)$.

Proof 1. Suppose $|G|=n,\|G\|=\operatorname{ex}\left(n ; K_{r+1}\right)$, and G has clique number at most r. If $v_{1}, v_{2} \in V(G)$ are non-adjacent, then $\operatorname{deg}\left(v_{1}\right)=\operatorname{deg}\left(v_{2}\right)$: If $\operatorname{deg}\left(v_{1}\right)<\operatorname{deg}\left(v_{2}\right)$, then the graph obtained by replacing v_{1} by a copy of the vertex v_{2} would also have clique number at most r, and it would have more edges than G, a contradiction.

If $v_{1}, v_{2}, v_{3} \in V(G)$ and $v_{1} v_{2}, v_{2} v_{3} \notin E(G)$, then $v_{1} v_{3} \notin E(G)$: By the previous observation, we have $\operatorname{deg}\left(v_{1}\right)=\operatorname{deg}\left(v_{2}\right)=\operatorname{deg}\left(v_{3}\right)$. If $v_{1} v_{3} \in E(G)$, then then graph obtained by replacing v_{1} and v_{3} by copies of the vertex v_{2} would have the clique number at most r and more edges than G.

Therefore, the relation \sim on $V(G)$ defined so that $u \sim v$ iff $u v \notin E(G)$ is an equivalence. The equivalence classes of \sim are independent sets in G and G is complete between any two such classes, and thus G is a complete multipartite graph. Since G has clique number at most r, G has at most r parts. Among such graphs, the graph $T_{r}(n)$ is the unique graph with the largest number of edges; consequently, G is isomorphic to $T_{r}(n)$.

Proof 2. By induction on $|V(G)|$. Suppose $|G|=n,\|G\|=\operatorname{ex}\left(n ; K_{r+1}\right)$, and G has clique number at most r. If $n \leq r$, then $G=K_{n}=T_{r}(n)$, and thus we can assume $n \geq r+1$. The graph G contains a clique A of size r, as otherwise we could add an edge to G without increasing the clique number above r. Every vertex of $V(G-A)$ has at most $r-1$ neighbors in A, as otherwise G would contain a clique of size $r+1$. Using the induction hypothesis on $G-A$, we have
$\|G\| \leq\|G-A\|+(n-r)(r-1)+\binom{r}{2} \leq t_{r}(n-r)+(n-r)(r-1)+\binom{r}{2}=t_{r}(n)$.
If $\|G\|=t_{r}(n)$, then all the inequalities must hold with equality, and thus every vertex of $V(G-A)$ has exactly $r-1$ neighbors in A and by the induction hypothesis, $G-A$ is isomorphic to $T_{r}(n-r)$. The vertices in different parts of the multipartite graph $G-A$ must have different neighborhoods in A, as otherwise G would contain a clique of size $r+1$. It follows that G is isomorphic to $T_{r}(n)$.

Theorem 8 (Erdős-Stone theorem). Every graph F satisfies

$$
\overline{\mathrm{xx}}(\infty ; F)=1-\frac{1}{\chi(F)-1} .
$$

We will give a proof later. For $\chi(F) \geq 3$, Erdős-Stone theorem gives exact asymptotics of ex $(n ; F)$:

$$
\frac{\operatorname{ex}(n ; F)}{\left(1-\frac{1}{\chi(F)-1}\right) \frac{n^{2}}{2}}=1+o(1)
$$

as $n \rightarrow \infty$. The situation is more complicated for bipartite graphs F, since then Erdős-Stone theorem only gives $\operatorname{ex}(n ; F)=o\left(n^{2}\right)$.

Lemma 9. For all integers $a \leq b$, we have

$$
\operatorname{ex}\left(n ; K_{a, b}\right)<\frac{\sqrt[a]{a^{2}+b}}{2} n^{2-1 / a}
$$

Proof. Let G be an n-vertex graph G avoiding $K_{a, b}$ as a subgraph. Let m be the number of $(a+1)$-tuples $\left(x, v_{1}, \ldots, v_{a}\right)$ of vertices of G such that $x v_{1}, \ldots, x v_{a} \in E(G)$. On one hand, for any $x \in V(G)$ we have $\operatorname{deg}^{a} x$ choices for an a-tuple of its neighbors, giving

$$
m=\sum_{x \in V(G)} \operatorname{deg}^{a} x \geq \frac{\left(\sum_{x \in V(G)} \operatorname{deg} x\right)^{a}}{n^{a-1}}=\frac{(2\|G\|)^{a}}{n^{a-1}} .
$$

On the other hand, for every a-tuple $\left(v_{1}, \ldots, v_{a}\right)$ of distinct vertices, we can choose their common neighbor x in less than b ways, as otherwise G would contain $K_{a, b}$. Moreover, the number of $(a+1)$-tuples $\left(x, v_{1}, \ldots, v_{a}\right)$ where v_{1}, \ldots, v_{a} are not pairwise distinct is less than $a^{2} n^{a}$, since there are less than a^{2} ways how to choose indices $i \neq j$ such that $v_{i}=v_{j}$, and n^{a} ways how to choose x and the vertices v_{k} for $k \neq i$. Therefore,

$$
m<\left(a^{2}+b\right) n^{a} .
$$

Combining these inequalities, we get

$$
\|G\|<\frac{\sqrt[a]{a^{2}+b}}{2} n^{2-1 / a}
$$

Corollary 10. If F is bipartite and one of its parts has size at most a, then

$$
\operatorname{ex}(n ; F)=O\left(n^{2-1 / a}\right)
$$

Lemma 11. For every prime p, there exists a graph with $2\left(p^{2}+p+1\right)$ vertices and $\left(p^{2}+p+1\right)(p+1)$ edges that does not contain C_{4} as a subgraph.

Proof. Since p is prime, there exists a finite projective plane of order p, with $p^{2}+p+1$ points and $p^{2}+p+1$ lines. Let G be the incidence graph of this finite projective plane, i.e., the vertices of G are the points and lines, and a point p is adjacent to a line ℓ iff and only if p lies on ℓ. This graph has $2\left(p^{2}+p+1\right)$ vertices and $\left(p^{2}+p+1\right)(p+1)$ edges. Moreover, it does not contain C_{4}, as otherwise two distinct lines would have intersection greater than 1.

Corollary 12. For every $b \geq 2$, we have

$$
\operatorname{ex}\left(n ; K_{2, b}\right)=\Theta\left(n^{3 / 2}\right)
$$

Proof. By Lemma 9, we have ex $\left(n ; K_{2, b}\right) \leq \frac{\sqrt{b+4}}{2} n^{3 / 2}=O\left(n^{3 / 2}\right)$. Suppose that $n \geq 16$. Then there exists a prime p such that $\sqrt{n} / 4 \leq p \leq \sqrt{n} / 2$, and in particular $2\left(p^{2}+p+1\right) \leq n$. Let G be the graph obtained in Lemma 11 together with $n-2\left(p^{2}+p+1\right)$ isolated vertices. Then G does not contain C_{4} as a subgraph, and thus G avoids $K_{2, b}$ as well. Moreover, $|G| \geq n$ and $\|G\| \geq n^{3 / 2} / 64$. Therefore $\operatorname{ex}\left(n ; K_{2, b}\right) \geq n^{3 / 2} / 64=\Omega\left(n^{3 / 2}\right)$.

Corollary 13. Suppose F is a bipartite graph with a part of size at most two and $n \geq|V(F)|$. Then

$$
\operatorname{ex}(n ; F)= \begin{cases}-\infty & \text { if }\|F\|=0 \\ 0 & \text { if }\|F\|=1 \\ \Theta(n) & \text { if }\|F\| \geq 2 \text { and } F \text { is a forest } \\ \Theta\left(n^{3 / 2}\right) & \text { otherwise. }\end{cases}
$$

Proof. If F has no edges, then it is a subgraph of every graph with $n \geq$ $|V(F)|$ vertices and $\operatorname{ex}(n ; F)=-\infty$. If F has exactly one edge, then it is a subgraph of every graph with $n \geq|V(F)|$ vertices and at least one edge and $\operatorname{ex}(n ; F)=0$. If F is a forest with at least two edges, then F is not a subgraph of either $K_{1, n-1}$ or a maximal matching on n vertices, and thus $\operatorname{ex}(n ; F) \geq\lfloor n / 2\rfloor$; together with Lemma 5, this gives ex $(n ; F)=\Theta(n)$. If F is bipartite, not a forest, and has a part of size at most two, then F contains a 4 -cycle, and thus Corollary 10 and Lemma 11 imply ex $(n ; F)=\Theta\left(n^{3 / 2}\right)$.

