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Notation: |G| number of vertices of G, ‖G‖ number of edges of G.

Definition 1. Maximum number of edges of a graph with n vertices that does
not contain any subgraph isomorphic to F1, . . . , Fm:

ex(n;F1, . . . , Fm).

Density version:

ex(n;F1, . . . , Fm) =
ex(n;F1, . . . , Fm)(

n
2

) .

Asymptotic density:

ex(∞;F1, . . . , Fm) = inf{ex(n;F1, . . . , Fm) : n ∈ N}.

Lemma 2. If n1 ≥ n2, then ex(n1;F1, . . . , Fm) ≤ ex(n2;F1, . . . , Fm).

Proof. Let G be a graph on n1 vertices not containing F1, . . . , Fn and having
exactly ex(n1;F1, . . . , Fm) edges. Let us first randomly uniformly choose
X ⊆ V (G) of size n2, and then an arbitrary unordered pair xy of elements
of X. Clearly, every pair of vertices of G has the same probability 1/

(
n
2

)
to

be chosen as xy, and thus the probability that xy is an edge of G is

p =
‖G‖(
n1

2

) = ex(n1;F1, . . . , Fm).

On the other hand, G[X] has at most ex(n2;F1, . . . , Fm) edges, and thus the
probability that xy is an edge of G[X] is

pX =
‖G[X]‖(

n2

2

) ≤ ex(n2;F1, . . . , Fm)(
n2

2

) = ex(n2;F1, . . . , Fm).
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Consequently,

ex(n1;F1, . . . , Fm) = p ≤ max

{
pX : X ∈

(
V (G)

n2

)}
≤ ex(n2;F1, . . . , Fm).

Corollary 3.

ex(∞;F1, . . . , Fm) = lim
n→∞

ex(n;F1, . . . , Fm),

and for every n0 we have

ex(∞;F1, . . . , Fm) ≤ ex(n0;F1, . . . , Fm).

Asymptotically, for n→∞, we have

ex(n;F1, . . . , Fm) = (ex(∞;F1, . . . , Fm) + o(1))
n2

2
.

Example 4. Every 5-vertex graph without C3 and C4 has at most 5 edges,
i.e. ex(5;C3, C4) = 1/2. Therefore, ex(n;C3, C4) ≤ 1

2

(
n
2

)
for every n ≥ 5 and

ex(∞;C3, C4) ≤ 1/2.
Remark: As we will see below, ex(∞;C3, C4) = 0 and ex(n;C3, C4) =

Θ(n3/2).

Lemma 5. If T is a forest on k ≥ 3 vertices, then ex(n;T ) < (k − 2)n.

Proof. Suppose for a contradiction that a graph G with n ≥ 1 vertices and at
least (k−2)n edges avoids T , and let us choose such a graph with n minimum.
Since ‖G‖ > 0, we have n ≥ 2. The minimality of |G| implies that G has
minimum degree at least k − 1 (we could delete vertices of degree at most
k − 2 to obtain a smaller counterexample). If H is an arbitrary subgraph of
G with less than k vertices, then every vertex of H has a neighbor outside
of V (H). Therefore, we can obtain a subgraph isomorphic to T by adding
leaves one by one, which is a contradiction.

Turán graph Tr(n): r-partite graph with n vertices, where the size of any
two parts differs by at most 1. Let us define tr(n) = ‖Tr(n)‖.

Observation 6.

tr(n) ≤ (1− 1/r)
n2

2
,

with equality iff r|n.

tr(n) ≥ (1− 1/r)
n2

2
− r

8
,

with equality iff r is even and n ≡ r/2 (mod r).
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Theorem 7 (Turán theorem). For every integer r ≥ 1, we have

ex(n;Kr+1) = tr(n),

and thus ex(∞;Kr+1) = 1 − 1/r. Moreover, suppose G is a graph with
n vertices and with clique number at most r. If ‖G‖ = tr(n), then G is
isomorphic to Tr(n).

Proof 1. Suppose |G| = n, ‖G‖ = ex(n;Kr+1), and G has clique number
at most r. If v1, v2 ∈ V (G) are non-adjacent, then deg(v1) = deg(v2): If
deg(v1) < deg(v2), then the graph obtained by replacing v1 by a copy of the
vertex v2 would also have clique number at most r, and it would have more
edges than G, a contradiction.

If v1, v2, v3 ∈ V (G) and v1v2, v2v3 6∈ E(G), then v1v3 6∈ E(G): By the
previous observation, we have deg(v1) = deg(v2) = deg(v3). If v1v3 ∈ E(G),
then then graph obtained by replacing v1 and v3 by copies of the vertex v2
would have the clique number at most r and more edges than G.

Therefore, the relation ∼ on V (G) defined so that u ∼ v iff uv 6∈ E(G)
is an equivalence. The equivalence classes of ∼ are independent sets in G
and G is complete between any two such classes, and thus G is a complete
multipartite graph. Since G has clique number at most r, G has at most
r parts. Among such graphs, the graph Tr(n) is the unique graph with the
largest number of edges; consequently, G is isomorphic to Tr(n).

Proof 2. By induction on |V (G)|. Suppose |G| = n, ‖G‖ = ex(n;Kr+1), and
G has clique number at most r. If n ≤ r, then G = Kn = Tr(n), and thus we
can assume n ≥ r+1. The graph G contains a clique A of size r, as otherwise
we could add an edge to G without increasing the clique number above r.
Every vertex of V (G − A) has at most r − 1 neighbors in A, as otherwise
G would contain a clique of size r + 1. Using the induction hypothesis on
G− A, we have

‖G‖ ≤ ‖G−A‖+(n−r)(r−1)+

(
r

2

)
≤ tr(n−r)+(n−r)(r−1)+

(
r

2

)
= tr(n).

If ‖G‖ = tr(n), then all the inequalities must hold with equality, and thus
every vertex of V (G−A) has exactly r−1 neighbors in A and by the induction
hypothesis, G−A is isomorphic to Tr(n− r). The vertices in different parts
of the multipartite graph G − A must have different neighborhoods in A,
as otherwise G would contain a clique of size r + 1. It follows that G is
isomorphic to Tr(n).
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Theorem 8 (Erdős-Stone theorem). Every graph F satisfies

ex(∞;F ) = 1− 1

χ(F )− 1
.

We will give a proof later. For χ(F ) ≥ 3, Erdős-Stone theorem gives
exact asymptotics of ex(n;F ):

ex(n;F )(
1− 1

χ(F )−1

)
n2

2

= 1 + o(1)

as n → ∞. The situation is more complicated for bipartite graphs F , since
then Erdős-Stone theorem only gives ex(n;F ) = o(n2).

Lemma 9. For all integers a ≤ b, we have

ex(n;Ka,b) <
a
√
a2 + b

2
n2−1/a.

Proof. Let G be an n-vertex graph G avoiding Ka,b as a subgraph. Let m
be the number of (a + 1)-tuples (x, v1, . . . , va) of vertices of G such that
xv1, . . . , xva ∈ E(G). On one hand, for any x ∈ V (G) we have dega x choices
for an a-tuple of its neighbors, giving

m =
∑

x∈V (G)

dega x ≥

(∑
x∈V (G) deg x

)a
na−1

=
(2‖G‖)a

na−1
.

On the other hand, for every a-tuple (v1, . . . , va) of distinct vertices, we can
choose their common neighbor x in less than b ways, as otherwise G would
contain Ka,b. Moreover, the number of (a+1)-tuples (x, v1, . . . , va) where v1,
. . . , va are not pairwise distinct is less than a2na, since there are less than
a2 ways how to choose indices i 6= j such that vi = vj, and na ways how to
choose x and the vertices vk for k 6= i. Therefore,

m < (a2 + b)na.

Combining these inequalities, we get

‖G‖ <
a
√
a2 + b

2
n2−1/a.
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Corollary 10. If F is bipartite and one of its parts has size at most a, then

ex(n;F ) = O(n2−1/a).

Lemma 11. For every prime p, there exists a graph with 2(p2+p+1) vertices
and (p2 + p+ 1)(p+ 1) edges that does not contain C4 as a subgraph.

Proof. Since p is prime, there exists a finite projective plane of order p, with
p2 + p + 1 points and p2 + p + 1 lines. Let G be the incidence graph of this
finite projective plane, i.e., the vertices of G are the points and lines, and
a point p is adjacent to a line ` iff and only if p lies on `. This graph has
2(p2 + p + 1) vertices and (p2 + p + 1)(p + 1) edges. Moreover, it does not
contain C4, as otherwise two distinct lines would have intersection greater
than 1.

Corollary 12. For every b ≥ 2, we have

ex(n;K2,b) = Θ(n3/2).

Proof. By Lemma 9, we have ex(n;K2,b) ≤
√
b+4
2
n3/2 = O(n3/2). Suppose

that n ≥ 16. Then there exists a prime p such that
√
n/4 ≤ p ≤

√
n/2, and

in particular 2(p2 + p + 1) ≤ n. Let G be the graph obtained in Lemma 11
together with n − 2(p2 + p + 1) isolated vertices. Then G does not contain
C4 as a subgraph, and thus G avoids K2,b as well. Moreover, |G| ≥ n and
‖G‖ ≥ n3/2/64. Therefore ex(n;K2,b) ≥ n3/2/64 = Ω(n3/2).

Corollary 13. Suppose F is a bipartite graph with a part of size at most two
and n ≥ |V (F )|. Then

ex(n;F ) =


−∞ if ‖F‖ = 0

0 if ‖F‖ = 1

Θ(n) if ‖F‖ ≥ 2 and F is a forest

Θ(n3/2) otherwise.

Proof. If F has no edges, then it is a subgraph of every graph with n ≥
|V (F )| vertices and ex(n;F ) = −∞. If F has exactly one edge, then it is
a subgraph of every graph with n ≥ |V (F )| vertices and at least one edge
and ex(n;F ) = 0. If F is a forest with at least two edges, then F is not
a subgraph of either K1,n−1 or a maximal matching on n vertices, and thus
ex(n;F ) ≥ bn/2c; together with Lemma 5, this gives ex(n;F ) = Θ(n). If F
is bipartite, not a forest, and has a part of size at most two, then F contains a
4-cycle, and thus Corollary 10 and Lemma 11 imply ex(n;F ) = Θ(n3/2).

5


