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Notation: |G| number of vertices of G, ||G|| number of edges of G.

Definition 1. Maximum number of edges of a graph with n vertices that does
not contain any subgraph isomorphic to Fy, ..., F,,:

ex(n; F,..., Fy).

Density version:

Asymptotic density:
ex(o0; Fy, ..., Fy,) = inf{ex(n; F1,..., F,) :n € N}
Lemma 2. ]fn1 > Nog, then e_X(nl, Fl, c. ,Fm) < e_X(nz, F17 c. >Fm>

Proof. Let G be a graph on n; vertices not containing F1, ..., F}, and having
exactly ex(ni; Fy, ..., F,,) edges. Let us first randomly uniformly choose
X C V(Q) of size ny, and then an arbitrary unordered pair zy of elements
of X. Clearly, every pair of vertices of G has the same probability 1/ (g) to
be chosen as xy, and thus the probability that xy is an edge of G is

e

(y)

On the other hand, G[X]| has at most ex(ng; F1,. .., Fy,) edges, and thus the
probability that zy is an edge of G[X] is

= e_x(nl, Fl, ey Fm)

_NGIXIN _ ex(ng; Fy, - ., Fn)

(3) (%)

Px =ex(ng; F1,..., Fy).



Consequently,

ex(ny; F1, ..., F,) = p < max {px X e <V(G))} <&X(ng; Fi, ..., Fp).

no

Corollary 3.
ex(o0; Fi, ..., Fp) = lim &X(n; Fy, ..., Fy),

n—oo

and for every ng we have
e_X(OO,Fl,,Fm) §e_X(n0,F1,,Fm)

Asymptotically, for n — oo, we have

n2

ex(n; F1,..., Fy) = (&X(co; Fy, ..., Fp) + 0(1))7.

Example 4. Fvery 5-vertex graph without C3 and Cy has at most 5 edges,

i.e. ex(5;C3, Cy) = 1/2. Therefore, ex(n; Cs,Cy) < 5(5) for every n >5 and

Remark: As we will see below, ex(o0;C3,Cy) = 0 and ex(n;C3,Cy) =
O(n*?).

Lemma 5. If T is a forest on k > 3 vertices, then ex(n;T) < (k — 2)n.

Proof. Suppose for a contradiction that a graph G with n > 1 vertices and at
least (k—2)n edges avoids 7', and let us choose such a graph with 7 minimum.
Since |G|l > 0, we have n > 2. The minimality of |G| implies that G has
minimum degree at least k — 1 (we could delete vertices of degree at most
k — 2 to obtain a smaller counterexample). If H is an arbitrary subgraph of
G with less than k vertices, then every vertex of H has a neighbor outside
of V(H). Therefore, we can obtain a subgraph isomorphic to T by adding
leaves one by one, which is a contradiction. O

Turdn graph T,.(n): r-partite graph with n vertices, where the size of any
two parts differs by at most 1. Let us define t,.(n) = ||T,.(n)]].

Observation 6. )

t,(n) < (1— 1/@%,

with equality iff r|n.
ty(n) > (1— 1/70)”—2 =
> 5 TR
with equality iff v is even and n = r/2 (mod 7).
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Theorem 7 (Turdn theorem). For every integer r > 1, we have
eX(”; KrJrl) = tr(n>7

and thus eX(oco; K,11) = 1 — 1/r. Moreover, suppose G is a graph with
n wvertices and with clique number at most r. If |G| = t.(n), then G is
isomorphic to T,(n).

Proof 1. Suppose |G| = n, ||G|| = ex(n; K,+1), and G has clique number
at most r. If v;,vy € V(G) are non-adjacent, then deg(vy) = deg(vq): If
deg(v;) < deg(vy), then the graph obtained by replacing v; by a copy of the
vertex vy would also have clique number at most r, and it would have more
edges than G, a contradiction.

If v1,v9,v3 € V(G) and vyve,vov3 € E(G), then vyvs ¢ E(G): By the
previous observation, we have deg(v;) = deg(ve) = deg(v3). If viv3 € E(G),
then then graph obtained by replacing v; and vs by copies of the vertex vy
would have the clique number at most r and more edges than G.

Therefore, the relation ~ on V(G) defined so that u ~ v iff uv ¢ E(G)
is an equivalence. The equivalence classes of ~ are independent sets in GG
and G is complete between any two such classes, and thus G is a complete
multipartite graph. Since G has clique number at most r, G has at most
r parts. Among such graphs, the graph T,.(n) is the unique graph with the
largest number of edges; consequently, G is isomorphic to T,.(n). O

Proof 2. By induction on |V (G)|. Suppose |G| = n, |G| = ex(n; K,41), and
G has clique number at most r. If n <r, then G = K,, = T,.(n), and thus we
can assume n > r+1. The graph G contains a clique A of size r, as otherwise
we could add an edge to G without increasing the clique number above r.
Every vertex of V(G — A) has at most r — 1 neighbors in A, as otherwise

G would contain a clique of size » + 1. Using the induction hypothesis on
G — A, we have

161 < 1G-al+0-) =1+ (3) < tla=r)+a=r)r-1+ () = o)

If |G| = t,(n), then all the inequalities must hold with equality, and thus
every vertex of V(G — A) has exactly r—1 neighbors in A and by the induction
hypothesis, G — A is isomorphic to T,.(n — r). The vertices in different parts
of the multipartite graph G — A must have different neighborhoods in A,
as otherwise G would contain a clique of size r + 1. It follows that G is
isomorphic to T,.(n). O



Theorem 8 (Erdés-Stone theorem). Every graph F satisfies

ﬁ(oo;F)zl—W.

We will give a proof later. For x(F) > 3, Erdds-Stone theorem gives
exact asymptotics of ex(n; F):

ex(n; F') 14o(1)
- m)%
x(F)—1/ 2

as n — 0o. The situation is more complicated for bipartite graphs F', since
then Erdds-Stone theorem only gives ex(n; F') = o(n?).

Lemma 9. For all integers a < b, we have

\a/ a2 + b 271/01
—Nn .

ex(n; Kqp) < 5

Proof. Let G be an n-vertex graph G avoiding K,; as a subgraph. Let m
be the number of (a + 1)-tuples (x,vy,...,v,) of vertices of G such that
xvq, ..., 20, € E(G). On one hand, for any = € V(G) we have deg” = choices
for an a-tuple of its neighbors, giving

(erv(c) deg x>a (2||G|y)a.

m = deg”x > =
na—l
zeV(G)

na—l

On the other hand, for every a-tuple (vy,...,v,) of distinct vertices, we can
choose their common neighbor = in less than b ways, as otherwise G would
contain K, ;. Moreover, the number of (a+1)-tuples (z,v1,...,v,) where vy,

.., U, are not pairwise distinct is less than a?n?, since there are less than
a? ways how to choose indices i # j such that v; = v;, and n® ways how to
choose = and the vertices v, for k # i. Therefore,

m < (a® + b)n".
Combining these inequalities, we get

a 2 b
Gl < L2 e,



Corollary 10. If F s bipartite and one of its parts has size at most a, then
ex(n; F) = O(n*>71/9).

Lemma 11. For every prime p, there exists a graph with 2(p*+p+1) vertices
and (p*> +p+ 1)(p+ 1) edges that does not contain Cy as a subgraph.

Proof. Since p is prime, there exists a finite projective plane of order p, with
p? + p + 1 points and p? 4+ p + 1 lines. Let G be the incidence graph of this
finite projective plane, i.e., the vertices of G are the points and lines, and
a point p is adjacent to a line ¢ iff and only if p lies on ¢. This graph has
2(p* 4+ p + 1) vertices and (p? + p + 1)(p + 1) edges. Moreover, it does not
contain (4, as otherwise two distinct lines would have intersection greater
than 1. O

Corollary 12. For every b > 2, we have
ex(n; Kyp) = O(n*?).

Proof. By Lemma 9, we have ex(n; Kop) < Y2032 = O(n?/?). Suppose
that n > 16. Then there exists a prime p such that \/n/4 < p < /n/2, and
in particular 2(p? + p+ 1) < n. Let G be the graph obtained in Lemma 11
together with n — 2(p? + p + 1) isolated vertices. Then G does not contain
Cy as a subgraph, and thus G avoids Ky as well. Moreover, |G| > n and
|G|l > n®?/64. Therefore ex(n; Kyp) > n3/2/64 = Q(n/?). O

Corollary 13. Suppose F' is a bipartite graph with a part of size at most two
andn > |V (F)|. Then

—00 if [|1F] =0
0 if [1F] =1
O(n) if ||F|l > 2 and F is a forest

O(n®?)  otherwise.

ex(n; F) =

Proof. If F has no edges, then it is a subgraph of every graph with n >
|V(F)| vertices and ex(n; F)) = —oo. If F' has exactly one edge, then it is
a subgraph of every graph with n > |V (F)| vertices and at least one edge
and ex(n; F') = 0. If F is a forest with at least two edges, then F' is not
a subgraph of either K, ,_; or a maximal matching on n vertices, and thus
ex(n; F') > |n/2]; together with Lemma 5, this gives ex(n; F)) = O(n). If F'
is bipartite, not a forest, and has a part of size at most two, then F' contains a
4-cycle, and thus Corollary 10 and Lemma 11 imply ex(n; F) = ©(n*?). O



