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By Turan’s theorem, we know that ex(co; Ki41) = 1 — 1/k. For hyper-
graphs, the situation is much more complicated, and we do not know the
exact answer even for the very simplest cases. For 2 < r < k, let K ,gr) de-
note the complete r-uniform hyper%raph with k vertices. Let us start with
giving a lower bound for ex(oc; K For a directed graph G let H (G) be
the 3-uniform hypergraph with the same vertex set such that a triple A is a
hyperedge iff G [A] has no isolated vertices and maximum outdegree at most
one.

Lemma 1. If G does not contain an induced directed 4-cycle, then Kf’) z
H(G). Moreover, if 3|n, the underlying undirected graph of G is Ky 3n/3n/3,
and every vertex ofé has indegree and outdegree n/3, then
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Proof. Consider any X C V(é) of size four. If the underlying undirected
graph of G [X] has a vertex v of degree at most one, then v and two of
its non-neighbors form a non-hyperedge of H(G). If G[X] has outdegree
at least two, then v and two of its outneighbors form a non-hyperedge of
H(é) Otherwise, note that the sum of outdegrees of é[X] is equal to the
number of edges of G[X], which in turn is equal to half the sum of degrees
of the underlying undirected graph of G [X]; hence, every vertex v of G [X]
must be incident with two edges, with exactly one leaving v. However, this
would imply G[X] is a directed 4—cycle, contradicting the assumptions. We
conclude that H(G)[X] is not K| ®)

Suppose now that the underlymg undirected graph of G is Ky /3m/3,n/3
and every vertex of G has outdegree n/3. Consider a non-hyperedge A of
H(G). If a vertex of G[A] is isolated, then since the underlying undirected
graph is complete multipartite, A is an independent set in G. Otherwise, by
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the definition of H(G), exactly one vertex of A has outdegree two in G[A].
Hence,

o= ()(5)+5) - Q56 - 3o

]

Note such orientations exist (you can orient the edges cyclically between
the three parts, but there are many other possible orientations). Hence, we
have ex(o0; Kf’)) > 2. Tt has been conjectured that ex(oo; Kf’)) = 2. How-
ever, proving this is complicated by the fact that there is not just a unique
hypergraph achieving this bound (Lemma 1 enables us to construct many
such hypergraphs), and thus any proof would have to avoid describing a
unique extremal hypergraph. This also poses a difficulty for the flag algebra
method, as these examples have different densities of various induced subhy-
pergraph, and all of them would have to give the same optimal value to the
semidefinite program.

To obtain an upper bound, we can use Moon-Moser inequalities. For a
hypergraph G and an integer s, let Ny(G) denote the number of complete
subhypergraphs of G with s vertices. Note that if G is r-uniform, then
N,.(G) = ||G]|. Moreover, N,_;(G) = ('G‘).

r—1

Lemma 2. For any n-vertex r-uniform hypergraph G and an integer s > r,
if Ns_1(G) > 0, then

NS—H (G) Z

s2N,(G) ( Ny(G)  (r— 1)(n—s)+s>
(s—r+1)(s+1)\Ny1(G) s '
Proof. For a set S C V(G), let d(S) denote the number of copies of K‘(;‘)H
in G that contain S.

Consider any K C V(G) inducing a complete hypergraph of size s, and

let p be the number of copies of K. ") in G with exactly s—1 vertices contained

in K. Clearly

p= Y (dK)-1)=—-s+ > dK).

Ke( X)) Ke( X))
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On the other hand, if for some v € V(G) \ K, the subhypergraph induced
by K U{v} is not complete, then there exists X C K of size r — 1 such that

X U{v} is not a hyperedge, and any copy of K 1% including v and with s — 1



vertices contained in K must be obtained from K U {v} by deleting a vertex
of X. Hence,
p<(r—1mn-s)+(s—r+1)d(K).

Combining these inequalities, we conclude that any K C V(G) inducing a
complete hypergraph of size s satisfies

—((r=1(n—s)+s)+ ZK,6<S;_(1> d(K')

d(K) >
( )_ s—r+1

Therefore,
EKG(V(SG)),G[K] complete d(K)
s+1
> ZKE(‘/(SG)),G[K] complete <_((T - 1)(n - S) + S) + ZK’E(SIfl) d(KI)>
- G e+ D)
<ZK€(V(SG)),G[K} complete ZK/e(j_fl) d(K/)> — ((r=1)(n —s) + s)Ns(G)
(s—r+1)(s+1)
(S e @) s compte D) = (= L) = 5) + )N, ()

Not1(G) =

(s—=r+1)(s+1)
ZK’E(Z(ﬁ)),G[K’] complete d<K,)> /Ns—l(G) - ((T - 1)(” - 3) + S)NS(G)

= (s—r+1)(s+1)

_ (3N(@))" /N1 (G) = ((r = 1)(n = 5) + 5)N,(G)
(s—r+1)(s+1)
s2N,(Q) ( Ny(G) (r—=1)(n—s)+ s>‘

(s =+ 1)(s +1) \N;1(G) 52
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Forn > s>r, let
F(”’S’”_%(”‘Hl_ngi;l)(rﬁl)
N <1 B (n(ilr_j;;(mj)> (:) - (1 - ﬁ) (Z) +0(n™).

Note that F(n,r,r) =0 and F(n,s,r) is increasing in s.



Lemma 3. Let G be an n-vertex r-uniform hypergraph. For s > r, if
Ns;_1(G) > 0, then

Ns(G) > Ns—l(G)Sz((z)) (HGH o F(”,SJ"))-

Proof. We prove the claim by induction on s. If s = r, we have

r2(®
N1 (G)— (2) (IGI = F(n,s,r)) = [|G]| = N (G).
S (rfl)
Suppose now that the claim holds for s > r, and let us show it also holds for
s+ 1. Indeed, using Lemma 2 and the induction hypothesis, we have

Ne1(G) s2 N,(G) (r—1)(n—s)+ s)

Ny(G) — (5—r+1)(s+1)<NS_1(G) 2
2L (161 - s,y - L= by

S
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= (s—r+1)(s+1)< 2(")

(r—1)(n—s)+s
(s—r+1)(s+1)

((r—=1)(n—s)+ 3)(1””1))‘

B () _ _
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Moreover,
P o (=00 —(;) £9)(0)
_(n—r+1 n-s+1 (r—1n-s)+s n
- i B | )
_(n—r+1  s(n—s+1) (r—1)(n—s)+s n
_( r(s—r+1)(,°) r(s—r+1)() )(7’—1)
_(n—r+1 sn—-s+1l)—(r—1n-—s)—s n
_< r(s—r+1)(,.%) )<7‘—1)
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and thus Nows (€) (S-‘rl)
V(6 2 G 161 Fn s+ 1)
as required. O



If the number of hyperedges is larger than F'(n,s,r), this gives a lower
bound on the number of appearances of K. s(r) in G.

Corollary 4. Let G be an n-vertex r-uniform hypergraph. For s > r, if
|G|l > F(n,s,r), then

s

NJ(@) > (Hrk(;))( ! TTUIGI — F(n,k,r)) > 0.
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Hence,
x(00: K 1
ex(oo; K1) <1 — —+

s — s—1\ "
(r—l)
For graphs (the case r = 2), this gives ex(o0; K) < 1 — S_Ll, and thus we

obtain another proof of Turdn’s theorem. For K f’), we obtain

2 5 1
ex(oo Ky < =24
ex(00; 3)_3 9+9,

and thus this bound is not tight. A better (but still not tight) bound
ex(o0; KY) < 0.561666

was obtained by Razborov using flag algebras.



