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By Turán’s theorem, we know that ex(∞;Kk+1) = 1 − 1/k. For hyper-
graphs, the situation is much more complicated, and we do not know the
exact answer even for the very simplest cases. For 2 ≤ r ≤ k, let K

(r)
k de-

note the complete r-uniform hypergraph with k vertices. Let us start with
giving a lower bound for ex(∞;K

(3)
4 ). For a directed graph ~G, let H(~G) be

the 3-uniform hypergraph with the same vertex set such that a triple A is a
hyperedge iff ~G[A] has no isolated vertices and maximum outdegree at most
one.

Lemma 1. If ~G does not contain an induced directed 4-cycle, then K
(3)
4 6⊆

H(~G). Moreover, if 3|n, the underlying undirected graph of ~G is Kn/3,n/3,n/3,

and every vertex of ~G has indegree and outdegree n/3, then

‖H(~G)‖ =

(
n

3

)
− 3

(
n/3

3

)
− n

(
n/3

2

)
=

5

9

(
n

3

)
+ O(n2).

Proof. Consider any X ⊆ V (~G) of size four. If the underlying undirected

graph of ~G[X] has a vertex v of degree at most one, then v and two of

its non-neighbors form a non-hyperedge of H(~G). If ~G[X] has outdegree
at least two, then v and two of its outneighbors form a non-hyperedge of
H(~G). Otherwise, note that the sum of outdegrees of ~G[X] is equal to the

number of edges of ~G[X], which in turn is equal to half the sum of degrees

of the underlying undirected graph of ~G[X]; hence, every vertex v of ~G[X]
must be incident with two edges, with exactly one leaving v. However, this
would imply ~G[X] is a directed 4-cycle, contradicting the assumptions. We

conclude that H(~G)[X] is not K
(3)
4 .

Suppose now that the underlying undirected graph of ~G is Kn/3,n/3,n/3

and every vertex of ~G has outdegree n/3. Consider a non-hyperedge A of

H(~G). If a vertex of ~G[A] is isolated, then since the underlying undirected

graph is complete multipartite, A is an independent set in ~G. Otherwise, by
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the definition of H(~G), exactly one vertex of A has outdegree two in ~G[A].
Hence,

‖H(~G)‖ =

(
n

3

)
−3

(
n/3

3

)
−n
(
n/3

2

)
=

(
n

3

)
−1

9

(
n

3

)
−1

3

(
n

3

)
+O(n2) =

5

9

(
n

3

)
+O(n2).

Note such orientations exist (you can orient the edges cyclically between
the three parts, but there are many other possible orientations). Hence, we

have ex(∞;K
(3)
4 ) ≥ 5

9
. It has been conjectured that ex(∞;K

(3)
4 ) = 5

9
. How-

ever, proving this is complicated by the fact that there is not just a unique
hypergraph achieving this bound (Lemma 1 enables us to construct many
such hypergraphs), and thus any proof would have to avoid describing a
unique extremal hypergraph. This also poses a difficulty for the flag algebra
method, as these examples have different densities of various induced subhy-
pergraph, and all of them would have to give the same optimal value to the
semidefinite program.

To obtain an upper bound, we can use Moon-Moser inequalities. For a
hypergraph G and an integer s, let Ns(G) denote the number of complete
subhypergraphs of G with s vertices. Note that if G is r-uniform, then
Nr(G) = ‖G‖. Moreover, Nr−1(G) =

( |G|
r−1

)
.

Lemma 2. For any n-vertex r-uniform hypergraph G and an integer s ≥ r,
if Ns−1(G) > 0, then

Ns+1(G) ≥ s2Ns(G)

(s− r + 1)(s + 1)

( Ns(G)

Ns−1(G)
− (r − 1)(n− s) + s

s2

)
.

Proof. For a set S ⊆ V (G), let d(S) denote the number of copies of K
(r)
|S|+1

in G that contain S.
Consider any K ⊆ V (G) inducing a complete hypergraph of size s, and

let p be the number of copies of K
(r)
s in G with exactly s−1 vertices contained

in K. Clearly

p =
∑

K′∈( K
s−1)

(d(K ′)− 1) = −s +
∑

K′∈( K
s−1)

d(K ′).

On the other hand, if for some v ∈ V (G) \ K, the subhypergraph induced
by K ∪ {v} is not complete, then there exists X ⊆ K of size r− 1 such that

X ∪{v} is not a hyperedge, and any copy of K
(r)
s including v and with s− 1
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vertices contained in K must be obtained from K ∪ {v} by deleting a vertex
of X. Hence,

p ≤ (r − 1)(n− s) + (s− r + 1)d(K).

Combining these inequalities, we conclude that any K ⊆ V (G) inducing a
complete hypergraph of size s satisfies

d(K) ≥
−((r − 1)(n− s) + s) +

∑
K′∈( K

s−1)
d(K ′)

s− r + 1
.

Therefore,

Ns+1(G) =

∑
K∈(V (G)

s ),G[K] complete
d(K)

s + 1

≥

∑
K∈(V (G)

s ),G[K] complete

(
−((r − 1)(n− s) + s) +

∑
K′∈( K

s−1)
d(K ′)

)
(s− r + 1)(s + 1)

=

(∑
K∈(V (G)

s ),G[K] complete

∑
K′∈( K

s−1)
d(K ′)

)
− ((r − 1)(n− s) + s)Ns(G)

(s− r + 1)(s + 1)

=

(∑
K′∈(V (G)

s−1 ),G[K′] complete
d2(K ′)

)
− ((r − 1)(n− s) + s)Ns(G)

(s− r + 1)(s + 1)

≥

(∑
K′∈(V (G)

s−1 ),G[K′] complete
d(K ′)

)2
/Ns−1(G)− ((r − 1)(n− s) + s)Ns(G)

(s− r + 1)(s + 1)

=

(
sNs(G)

)2
/Ns−1(G)− ((r − 1)(n− s) + s)Ns(G)

(s− r + 1)(s + 1)

=
s2Ns(G)

(s− r + 1)(s + 1)

( Ns(G)

Ns−1(G)
− (r − 1)(n− s) + s

s2

)
.

For n ≥ s ≥ r, let

F (n, s, r) =
1

r

(
n− r + 1− n− s + 1(

s−1
r−1

) )( n

r − 1

)
=
(

1− (n− s + 1)

(n− r + 1)
(
s−1
r−1

))(n
r

)
=
(

1− 1(
s−1
r−1

))(n
r

)
+ O(nr−1).

Note that F (n, r, r) = 0 and F (n, s, r) is increasing in s.
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Lemma 3. Let G be an n-vertex r-uniform hypergraph. For s ≥ r, if
Ns−1(G) > 0, then

Ns(G) ≥ Ns−1(G)
r2
(
s
r

)
s2
(

n
r−1

)(‖G‖ − F (n, s, r)).

Proof. We prove the claim by induction on s. If s = r, we have

Ns−1(G)
r2
(
s
r

)
s2
(

n
r−1

)(‖G‖ − F (n, s, r)) = ‖G‖ = Nr(G).

Suppose now that the claim holds for s ≥ r, and let us show it also holds for
s + 1. Indeed, using Lemma 2 and the induction hypothesis, we have

Ns+1(G)

Ns(G)
≥ s2

(s− r + 1)(s + 1)

( Ns(G)

Ns−1(G)
− (r − 1)(n− s) + s

s2

)
≥ s2

(s− r + 1)(s + 1)

( r2
(
s
r

)
s2
(

n
r−1

)(‖G‖ − F (n, s, r))− (r − 1)(n− s) + s

s2

)
=

r2
(
s
r

)
(s− r + 1)(s + 1)

(
n

r−1

)(‖G‖ − F (n, s, r))− (r − 1)(n− s) + s

(s− r + 1)(s + 1)

=
r2
(
s+1
r

)
(s + 1)2

(
n

r−1

)(‖G‖ − F (n, s, r)−
((r − 1)(n− s) + s)

(
n

r−1

)
r2
(
s
r

) )
.

Moreover,

F (n, s, r) +
((r − 1)(n− s) + s)

(
n

r−1

)
r2
(
s
r

)
=
(n− r + 1

r
− n− s + 1

r
(
s−1
r−1

) +
(r − 1)(n− s) + s

r2
(
s
r

) )( n

r − 1

)
=
(n− r + 1

r
− s(n− s + 1)

r(s− r + 1)
(

s
r−1

) +
(r − 1)(n− s) + s

r(s− r + 1)
(
s
r

) )( n

r − 1

)
=
(n− r + 1

r
− s(n− s + 1)− (r − 1)(n− s)− s

r(s− r + 1)
(

s
r−1

) )( n

r − 1

)
=
(n− r + 1

r
− n− s

r
(

s
r−1

))( n

r − 1

)
= F (n, s + 1, r),

and thus
Ns+1(G)

Ns(G)
≥

r2
(
s+1
r

)
(s + 1)2

(
n

r−1

)(‖G‖ − F (n, s + 1, r)),

as required.
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If the number of hyperedges is larger than F (n, s, r), this gives a lower

bound on the number of appearances of K
(r)
s in G.

Corollary 4. Let G be an n-vertex r-uniform hypergraph. For s ≥ r, if
‖G‖ > F (n, s, r), then

Ns(G) ≥
( s∏
k=r

r2
(
k
r

)
k2

) 1(
n

r−1

)s−r s∏
k=r

(‖G‖ − F (n, k, r)) > 0.

Hence,

ex(∞;K(r)
s ) ≤ 1− 1(

s−1
r−1

) .
For graphs (the case r = 2), this gives ex(∞;Ks) ≤ 1− 1

s−1 , and thus we

obtain another proof of Turán’s theorem. For K
(3)
4 , we obtain

ex(∞;K
(4)
3 ) ≤ 2

3
=

5

9
+

1

9
,

and thus this bound is not tight. A better (but still not tight) bound

ex(∞;K
(4)
3 ) ≤ 0.561666

was obtained by Razborov using flag algebras.
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