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For graphs F' and G, let sp(G) be the number of |F|-element sets X C
V(G) such that FF C G[X], i.e., the number of places where F' appears as a
subgraph of G. If G has more than ex(|G|; F') edges, then clearly s¢(G) > 0;
can we say something about how large sp(G) is? It turns out that if the
density of G is larger than €x(|G|; F'), then F' appears in G with positive
density.

Lemma 1. For any graph F' and any € > 0, there exist f > 0 and ng such
that the following holds. If G is a graph with n > ng vertices and at least
(@X(00; F) +¢)(3) edges, then sp(G) > pnltl).

Proof. Without loss of generality, we can assume ex(oo; F') + ¢ < 1. Let ng
be the smallest integer greater than 2|F| such that eX(ng; F') < ex(oco; F') +
e/2. For a set M C V(G) of size ng chosen uniformly at random, we have
E[|GM]||/ ()] = ex(o0; F) + €. Since [|G[M]]|/("?) <1, we have

£
2(1 —ex(o0; F) —€/2)

Let v = s Consider X C V(G) of size |F| chosen uniformly at
random. We can imagine that we first choose M at random and then choose
X C M at random. If G[M] has at least (eX(o0; F) + £/2)("%) > &x(ng; F)
edges, then G[M] contains F' as a subgraph, and with probability at least

("?‘)71 the set X hits the vertex set of this subgraph. Therefore,

pe[IGvl/ ('3 ) 2 extoes )+ of2] 2

Pr(|G[M]||/ () > ex(o0; F) + /2] v
) ~ ()

In other words, there are at least 'y(”o)_l(|g|) > fy(”o)_l n_ sets X such

Pr[F C G[X]] >

Fl \F|) 2FTF]!
that /' C G[X]. Hence, the claim of the lemma holds with
g
B = o
()21 E|!
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In the rest of this text, we will study in more detain the behavior of
the number of triangles in graphs whose density exceeds the bound given
by Mantel’s theorem. Let us remark that such a detailed study was also
performed for cliques in graphs whose density exceeds the bound given by
Turdn’s theorem, using similar ideas (but being technically rather more in-
volved).

It will be useful to work in the induced subgraph setting. Let ip(G) denote
the number of |F|-element subsets X C V(@) such that G[X] is isomorphic
to F', and let

ex;(n,m; F) = min{ir(G) : |G| = n, |G| = m}.

Hence, we are interested in the behavior of the function ex;(n, m; K3) when
m > n?/4. Let us start with a simple result. Let N3 denote the graph
consisting of 3 isolated vertices.

Lemma 2. If G is a graph with degree sequence dy, ..., d,, then

15, (G) + in, (G) = (g) (-2l + E_; (Z)

Proof. Let p denote the number of pairs (z,{y, z}), where z, y and z are
distinct vertices and either xy, xz € E(G) or zy,xz ¢ E(G). On one hand,

n

= 31(6) + 31, (6) + i1, (G) + (€)= ()

) T 2is(G) + i (G)).

On the other hand,

_ i[(”_z);”_ Do 2)di+2<6§>]
- 3(2’) ot — 2| + 2; (Cé)

Comparing the two expressions, we get the desired result. O

Corollary 3. If G is a graph with degree sequence dy, ..., d,, then

@) 2 1 [-m-261+23 (5]

with equality iff G is a complete multipartite graph.
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Proof. We have

I~ /n—1—4d,
. <

~(5) - 3-2nen+ 530 (%)

i=1

with equality iff in G, the neighborhood of each vertex induces a clique. This
is the case iff G is a disjoint union of cliques, and thus G is a complete
multipartite graph. The desired inequality then follows from Lemma 2. [J

Corollary 4.

m(4m — n?)
3n ’

with equality iff m = t,.(n) for some divisor r of n.

ex;(n,m; K3) >

Proof. Let G be a graph with n vertices, m edges and the degree sequence
dy, ..., d,. Cauchy-Schwarz inequality gives

2

“(n—29 2 ‘) = — E d? > — 4—
(n—2)m+ ;:1 <2) nm + > —nm+ t

i=1
with equality iff dy = ... = d,, = 277", i.e., G is regular. Corollary 3 gives
iks(G) > m(473"—n_"2), with equality iff G is a complete multipartite graph.
Hence, the equality holds iff G is a regular multipartite graph, and thus
m = t.(n) for some divisor r of n. O

Hence, we know ex;(n, m; K3) exactly for certain isolated points. Next,
we show that we can linearly interpolate between these points.

Lemma 5. Let ¢ be an arbitrary real number and let € be a positive real
number. For any integer n, the function f(G) = ||G||+c ik, (G) +ein,(G) is
among all n-vertex graphs maximized only on complete multipartite graphs.

Proof. Suppose G is an n-vertex graph maximizing f and consider any non-
adjacent vertices x and y of G. Let k, = |G[N (2)]|, ky = |GINW)]|, ez =
in,(G—Nl[z]|—y), and e, = in,(G— N[y] —z). Let G, be the graph obtained
from G —y by adding a clone of z, and G, the graph obtained from G —x by
adding a clone of y. Letting 6 = (degx +c¢- k, +ce;) — (degy +c -k, +€e,),
we have

f(Ga)
f(Gy)

F(G) + o +e(IN(z) UN(y)| = [N(2)])
F(G) =0 +e(IN(z) UN(y)| = [N(y)])



Since G maximizes f among the n-vertex graphs and € > 0, it follows that

d =0 and |N(x)| = |N(z) UN(y)| = |N(y)|, and thus N(z) = N(y).
Therefore, any two non-adjacent vertices of G have the same neighbors,

and thus G is a complete multipartite graph. ]

Corollary 6. Let ¢ be an arbitary irrational number. For any integer n, the
function f(G) = ||G|| + ¢+ ik, (G) is among all n-vertex graphs maximized on
some Turan graph.

Proof. Fore > 0, let f.(G) = |G|+ ¢ ik, (G)+ein,(G). Since there are only
finitely many n-vertex graphs, Lemma 5 implies that there exists a complete
multipartite graph G satisfying the following condition: For every ¢y > 0,
there exists a positive ¢ < gy such that f.(G) < f.(Gy) for every n-vertex
graph G. Since lim. o f.(G) = f(G), it follows that f(G) < f(Gp) for every
n-vertex graph G.

Let ai, ..., a, be the sizes of the parts of Go. If r = 1, then Gy is
the edgeless Turan graph 77(n); hence, we can assume r > 2. Let a =
S sa, f= ZKJ. a;a;, and v = Z3§i<j a;a; + 623§i<j<k a;a;ay. Consider
the complete multipartite graph G with parts of sizes z,y, as, ..., a,, where
r+y =a +ay Then f(G) = (1 + ca)zvy + (o + ¢f)(ar + az) + 7. Since
¢ is irrational we have 1 + ca # 0. If 1 + ca were negative, then we could
set © = 0ay = a; + ay (e, let G be the graph obtained from Gy by
merging two of its parts) and obtain f(G) > f(Gy), which is a contradiction.
Therefore, 14+ca > 0. Since Gy maximizes f, it follows that xy < ajay for all
nonnegative integers x and y such that z+y = a; +az, and thus |a; —as| < 1.

Symmetrically, we have |a; — a;| < 1 for all 4,5 € {1,...,r}, and thus
G() = Tr (TL) O

For a positive integer n, let ¢, : RS — Ry be the maximum convex
function such that ,(0) = 0 and ¢, (¢t.(n)) = ix,(T.(n)) holds for r €

{1,...,n}.
Theorem 7.
ex;(n, m; K3) > ¢, (m).

Proof. Otherwise, there would exist an n-vertex graph G such that i, (Gg) <
¥n(]|Gol|). The definition of 1), implies that there exists a real (and without
loss of generality irrational) ¢ such that the function f(G) = |G|+ ¢+ ik, (G)
satisfies f(Go) > f(t.(n)) for every r € {1,...,n}. This contradicts Corol-
lary 6. O]

Let us remark that the function ex(n,m; K3) is actually strictly concave
between the points {t,(n) : » € {1,...,n}}; this was proven by Razborov,
who gave the exact formula for ex(n, m; K3) using the flag algebras method.



