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For graphs F and G, let sF (G) be the number of |F |-element sets X ⊆
V (G) such that F ⊆ G[X], i.e., the number of places where F appears as a
subgraph of G. If G has more than ex(|G|;F ) edges, then clearly sG(G) > 0;
can we say something about how large sF (G) is? It turns out that if the
density of G is larger than ex(|G|;F ), then F appears in G with positive
density.

Lemma 1. For any graph F and any ε > 0, there exist β > 0 and n0 such
that the following holds. If G is a graph with n ≥ n0 vertices and at least
(ex(∞;F ) + ε)

(
n
2

)
edges, then sF (G) ≥ βn|F |).

Proof. Without loss of generality, we can assume ex(∞;F ) + ε ≤ 1. Let n0

be the smallest integer greater than 2|F | such that ex(n0;F ) < ex(∞;F ) +
ε/2. For a set M ⊆ V (G) of size n0 chosen uniformly at random, we have
E[‖G[M ]‖/

(
n0

2

)
] ≥ ex(∞;F ) + ε. Since ‖G[M ]‖/

(
n0

2

)
≤ 1, we have

Pr

[
‖G[M ]‖/

(
n0

2

)
≥ ex(∞;F ) + ε/2

]
≥ ε

2(1− ex(∞;F )− ε/2)
.

Let γ = ε
2(1−ex(∞;F )−ε/2) . Consider X ⊆ V (G) of size |F | chosen uniformly at

random. We can imagine that we first choose M at random and then choose
X ⊆ M at random. If G[M ] has at least (ex(∞;F ) + ε/2)

(
n0

2

)
> ex(n0;F )

edges, then G[M ] contains F as a subgraph, and with probability at least(
n0

|F |

)−1
the set X hits the vertex set of this subgraph. Therefore,

Pr[F ⊆ G[X]] ≥
Pr[‖G[M ]‖/

(
n0

2

)
≥ ex(∞;F ) + ε/2](
n0

|F |

) ≥ γ(
n0

|F |

) .
In other words, there are at least γ

(
n0

|F |

)−1( n
|F |

)
≥ γ

(
n0

|F |

)−1 n|F |

2|F ||F |! sets X such

that F ⊆ G[X]. Hence, the claim of the lemma holds with

β =
γ(

n0

|F |

)
2|F ||F |!

.
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In the rest of this text, we will study in more detain the behavior of
the number of triangles in graphs whose density exceeds the bound given
by Mantel’s theorem. Let us remark that such a detailed study was also
performed for cliques in graphs whose density exceeds the bound given by
Turán’s theorem, using similar ideas (but being technically rather more in-
volved).

It will be useful to work in the induced subgraph setting. Let iF (G) denote
the number of |F |-element subsets X ⊆ V (G) such that G[X] is isomorphic
to F , and let

exi(n,m;F ) = min{iF (G) : |G| = n, ‖G‖ = m}.

Hence, we are interested in the behavior of the function exi(n,m;K3) when
m > n2/4. Let us start with a simple result. Let N3 denote the graph
consisting of 3 isolated vertices.

Lemma 2. If G is a graph with degree sequence d1, . . . , dn, then

iK3(G) + iN3(G) =

(
n

3

)
− (n− 2)‖G‖+

n∑
i=1

(
di
2

)
.

Proof. Let p denote the number of pairs (x, {y, z}), where x, y and z are
distinct vertices and either xy, xz ∈ E(G) or xy, xz 6∈ E(G). On one hand,

p = 3iK3(G) + 3iN3(G) + iK1,2(G) + iK1,2
(G) =

(
n

3

)
+ 2(iK3(G) + iN3(G)).

On the other hand,

p =
n∑

i=1

[(di
2

)
+

(
n− di − 1

2

)]
=

n∑
i=1

[(n− 2)(n− 1)

2
− (n− 2)di + 2

(
di
2

)]
= 3

(
n

3

)
− 2(n− 2)‖G‖+ 2

n∑
i=1

(
di
2

)
.

Comparing the two expressions, we get the desired result.

Corollary 3. If G is a graph with degree sequence d1, . . . , dn, then

iK3(G) ≥ 1

3

[
−(n− 2)‖G‖+ 2

n∑
i=1

(
di
2

)]
,

with equality iff G is a complete multipartite graph.
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Proof. We have

iN3(G) ≤ 1

3

n∑
i=1

(
n− 1− di

2

)
=

(
n

3

)
− 2

3
(n− 2)‖G‖+

1

3

n∑
i=1

(
di
2

)
,

with equality iff in G, the neighborhood of each vertex induces a clique. This
is the case iff G is a disjoint union of cliques, and thus G is a complete
multipartite graph. The desired inequality then follows from Lemma 2.

Corollary 4.

exi(n,m;K3) ≥
m(4m− n2)

3n
,

with equality iff m = tr(n) for some divisor r of n.

Proof. Let G be a graph with n vertices, m edges and the degree sequence
d1, . . . , dn. Cauchy-Schwarz inequality gives

−(n− 2)m+ 2
n∑

i=1

(
di
2

)
= −nm+

n∑
i=1

d2i ≥ −nm+ 4
m2

n
,

with equality iff d1 = . . . = dn = 2m
n

, i.e., G is regular. Corollary 3 gives

iK3(G) ≥ m(4m−n2)
3n

, with equality iff G is a complete multipartite graph.
Hence, the equality holds iff G is a regular multipartite graph, and thus
m = tr(n) for some divisor r of n.

Hence, we know exi(n,m;K3) exactly for certain isolated points. Next,
we show that we can linearly interpolate between these points.

Lemma 5. Let c be an arbitrary real number and let ε be a positive real
number. For any integer n, the function f(G) = ‖G‖+c · iK3(G)+εiN3(G) is
among all n-vertex graphs maximized only on complete multipartite graphs.

Proof. Suppose G is an n-vertex graph maximizing f and consider any non-
adjacent vertices x and y of G. Let kx = ‖G[N(x)]‖, ky = ‖G[N(y)]‖, ex =
iN2(G−N [x]−y), and ey = iN2(G−N [y]−x). Let Gx be the graph obtained
from G−y by adding a clone of x, and Gy the graph obtained from G−x by
adding a clone of y. Letting δ = (deg x+ c · kx + εex)− (deg y+ c · ky + εey),
we have

f(Gx) = f(G) + δ + ε(|N(x) ∪N(y)| − |N(x)|)
f(Gy) = f(G)− δ + ε(|N(x) ∪N(y)| − |N(y)|)
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Since G maximizes f among the n-vertex graphs and ε > 0, it follows that
δ = 0 and |N(x)| = |N(x) ∪N(y)| = |N(y)|, and thus N(x) = N(y).

Therefore, any two non-adjacent vertices of G have the same neighbors,
and thus G is a complete multipartite graph.

Corollary 6. Let c be an arbitary irrational number. For any integer n, the
function f(G) = ‖G‖+ c · iK3(G) is among all n-vertex graphs maximized on
some Turán graph.

Proof. For ε > 0, let fε(G) = ‖G‖+c · iK3(G)+εiN3(G). Since there are only
finitely many n-vertex graphs, Lemma 5 implies that there exists a complete
multipartite graph G0 satisfying the following condition: For every ε0 > 0,
there exists a positive ε < ε0 such that fε(G) ≤ fε(G0) for every n-vertex
graph G. Since limε→0 fε(G) = f(G), it follows that f(G) ≤ f(G0) for every
n-vertex graph G.

Let a1, . . . , ar be the sizes of the parts of G0. If r = 1, then G0 is
the edgeless Turán graph T1(n); hence, we can assume r ≥ 2. Let α =∑r

i=3 ai, β =
∑

i<j aiaj, and γ =
∑

3≤i<j aiaj + c
∑

3≤i<j<k aiajak. Consider
the complete multipartite graph G with parts of sizes x, y, a3, . . . , ar, where
x + y = a1 + a2. Then f(G) = (1 + cα)xy + (α + cβ)(a1 + a2) + γ. Since
c is irrational we have 1 + cα 6= 0. If 1 + cα were negative, then we could
set x = 0 a y = a1 + a2 (i.e., let G be the graph obtained from G0 by
merging two of its parts) and obtain f(G) > f(G0), which is a contradiction.
Therefore, 1+cα > 0. Since G0 maximizes f , it follows that xy ≤ a1a2 for all
nonnegative integers x and y such that x+y = a1+a2, and thus |a1−a2| ≤ 1.

Symmetrically, we have |ai − aj| ≤ 1 for all i, j ∈ {1, . . . , r}, and thus
G0 = Tr(n).

For a positive integer n, let ψn : R+
0 → R+

0 be the maximum convex
function such that ψn(0) = 0 and ψn(tr(n)) = iK3(Tr(n)) holds for r ∈
{1, . . . , n}.

Theorem 7.
exi(n,m;K3) ≥ ψn(m).

Proof. Otherwise, there would exist an n-vertex graphG0 such that iK3(G0) <
ψn(‖G0‖). The definition of ψn implies that there exists a real (and without
loss of generality irrational) c such that the function f(G) = ‖G‖+ c · iK3(G)
satisfies f(G0) > f(tr(n)) for every r ∈ {1, . . . , n}. This contradicts Corol-
lary 6.

Let us remark that the function ex(n,m;K3) is actually strictly concave
between the points {tr(n) : r ∈ {1, . . . , n}}; this was proven by Razborov,
who gave the exact formula for ex(n,m;K3) using the flag algebras method.
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