Coloring of triangle-free graphs and the Rosenfeld counting method

Zdeněk Dvořák

January 3, 2022

There are many constructions that show that triangle-free graphs can have arbitrarily large chromatic number. Let us give one that shows that being triangle-free does not help to get better bound on the chromatic number even for degenerate graphs.

Lemma 1. For every integer $d \geq 1$, there exists a d-degenerate graph G_{d} of girth at least six and of chromatic number $d+1$.

Proof. We prove the claim by induction on d. For $d=1$, we can take $G_{1}=K_{2}$. Suppose now that $d \geq 2$. The graph G_{d} is obtained as follows. We start with an independent set K of size $d\left(\left|V\left(G_{d-1}\right)\right|-1\right)+1$ and with $\binom{|K|}{\left(\left|V\left(G_{d-1}\right)\right|\right.}$ copies of G_{d-1}. For each subset S of K of size $\left|V\left(G_{d-1}\right)\right|$, we then choose a distinct copy G_{S} of G_{d-1} and add a perfect matching between S and $V\left(G_{S}\right)$. Observe that G_{d} has girth at least six, as any cycle is either contained in a copy of G_{d-1}, or contains edges of at least two copies of G_{d-1} and passes through K. Moreover, G_{d} is d-degenerate, as each copy of G_{d-1} is $(d-1)$-degenerate and the degrees of its vertices are increased only by 1 in G_{d}.

Suppose for a contradiction that G_{d} can be colored using at most d colors. By the pigeonhole principle, some set $S \subseteq K$ of size $\left|V\left(G_{d-1}\right)\right|$ is colored using just one color. But then the copy G_{S} of G_{d-1} would be colored using only the remaining $d-1$ colors, which is a contradiction.

However, we can get an improvement in terms of the maximum degree. We give a relatively recent proof of Martinsson, which uses an idea based on a counting argument of Rosenfeld. To illustrate the method, let us start with a simpler example. Recall that a star coloring is a proper coloring in which any two color classes induce a star forest (or equivalently, at least three colors appear on any 4 -vertex path).

Theorem 2. For any positive integer Δ, any graph of maximum degree at most Δ has a star coloring by at most $\left\lceil 13 \Delta^{3 / 2}\right\rceil$ colors.

Proof. Let $k=\left\lceil 13 \Delta^{3 / 2}\right\rceil$ and $\beta=k / 3$. Let $\mathcal{C}(G)$ be the set of all star colorings of G using colors $\{1, \ldots, k\}$. We will prove that if G is a graph of maximum degree at most Δ, then for every $v \in V(G)$, we have

$$
\frac{|\mathcal{C}(G)|}{|\mathcal{C}(G-v)|} \geq \beta
$$

This clearly implies $\mathcal{C}(G) \neq \emptyset$, and in fact that G has at least $\beta^{|V(G)|}$ star colorings by at most k colors. We prove the claim by induction on the number of vertices of G. When $|V(G)|=1$, we have $|\mathcal{C}(G)|=k>\beta$ and $|\mathcal{C}(G-v)|=1$, and thus the claim holds. Hence, we can assume that $|V(G)|>1$.

Let $\mathcal{C}_{v}(G)$ be the set of proper k-colorings of G whose restriction to $G-v$ is a star coloring. Note that any coloring in $\mathcal{C}(G-v)$ can be extended to a coloring in $\mathcal{C}_{v}(G)$ by choosing a color of v different from the color of the neighbors of v, and this can be done in at least $k-\Delta$ ways. Hence,

$$
\left|\mathcal{C}_{v}(G)\right| \geq(k-\Delta)|\mathcal{C}(G-v)|
$$

For a 4 -vertex path P containing v, let \mathcal{C}_{P} be the set of colorings in \mathcal{C}_{v} that use only two colors on P. Letting \mathcal{P} be the set of all 4 -vertex paths in G containing v, we have

$$
\mathcal{C}(G)=\mathcal{C}_{v} \backslash \bigcup_{P \in \mathcal{P}} \mathcal{C}_{P}
$$

Hence, we need to bound $\left|\mathcal{C}_{P}\right|$. Note that each coloring in \mathcal{C}_{P} is obtained from a star coloring of $G-V(P)$ by choosing the two colors used on P, and thus (using the induction hypothesis),

$$
\left|\mathcal{C}_{P}\right| \leq k^{2}|\mathcal{C}(G-V(P))| \leq \frac{k^{2}}{\beta^{3}}|\mathcal{C}(G-v)|
$$

Putting these bounds together, we have

$$
\begin{aligned}
|\mathcal{C}(G)| & \geq\left|\mathcal{C}_{v}\right|-\sum_{P \in \mathcal{P}}\left|\mathcal{C}_{P}\right| \\
& \geq(k-\Delta)|\mathcal{C}(G-v)|-|\mathcal{P}| \cdot \frac{k^{2}}{\beta^{3}}|\mathcal{C}(G-v)| \\
& =\left(k-\Delta-2 \Delta^{3} \cdot \frac{k^{2}}{\beta^{3}}\right)|\mathcal{C}(G-v)| \\
& \geq \beta|\mathcal{C}(G-v)| .
\end{aligned}
$$

Let us now give a (somewhat more involved) argument for the chromatic number of triangle-free graphs.

Theorem 3. For every $\Delta \geq 10^{10}$, every triangle-free graph of maximum degree at most Δ has chromatic number at most $\lceil 4 \Delta / \log \Delta\rceil$.

Proof. Let $k=\lceil 4 \Delta / \log \Delta\rceil$ and $\ell=\frac{\Delta^{1-\log 2}}{\log \Delta}$. For a graph G, let $\mathcal{C}(G)$ be the set of all proper k-colorings of G. We will show that if G is a triangle-free graph of maximum degree at most Δ, then for every $v \in V(G)$, we have

$$
\frac{|\mathcal{C}(G)|}{|\mathcal{C}(G-v)|} \geq \ell .
$$

This clearly implies $\mathcal{C}(G) \neq \emptyset$, and in fact that G has at least $\ell^{|V(G)|} k$ colorings. We prove the claim by induction on the number of vertices of G. When $|V(G)|=1$, we have $|\mathcal{C}(G)|=k>\ell$ and $|\mathcal{C}(G-v)|=1$, and thus the claim holds. Hence, we can assume that $|V(G)|>1$.

For a vertex $x \in V(G)$ and a partial coloring φ of G, let $a(G, \varphi, x)$ denote the number of colors in $\{1, \ldots, k\}$ that do not appear on the neighbors of x in φ. Note that each coloring $\varphi \in \mathcal{C}(G-v)$ extends to a proper k-coloring of G in exactly $a(G, \varphi, v)$ ways, and thus

$$
\frac{|\mathcal{C}(G)|}{|\mathcal{C}(G-v)|}=\frac{\sum_{\varphi \in \mathcal{C}(G-v)} a(G, \varphi, v)}{\mid \mathcal{C}(G-v)}=E[a(G, \varphi, v)],
$$

where the expectation is over a k-coloring φ of $G-v$ chosen uniformly at random. Hence, we need to prove that

$$
E[a(G, \varphi, v)] \geq \ell
$$

Let $t=\frac{\ell}{\log \Delta} \geq 2$; we say a neighbor u of v is φ-poor if $a(G-v, \varphi, u) \leq t$. Consider any k-coloring ψ of $G-v-u$. If $a(G-v, \psi, u)>t$, then ψ does not extend to any k-coloring φ of $G-v$ such that u is φ-poor; if $a(G-v, \psi, u) \leq t$, then ψ extends to exactly $a(G-v, \psi, u) \leq t k$-colorings φ of $G-v$ such that u is φ-poor. Hence, using the induction hypothesis for $G-v$ and u, the number of k-colorings of $G-v$ such that u is φ-poor is at most

$$
t \cdot|\mathcal{C}(G-v-u)| \leq \frac{t}{\ell}|\mathcal{C}(G-v)|
$$

and thus

$$
\operatorname{Pr}[u \text { is } \varphi \text {-poor }] \leq \frac{t}{\ell} .
$$

Let $q(\varphi)$ denote the number of φ-poor neighbors of v. Then

$$
E[q(\varphi)] \leq \frac{t}{\ell} \cdot \operatorname{deg} v \leq \frac{t \Delta}{\ell} \leq \frac{k}{4}
$$

and thus

$$
\operatorname{Pr}\left[q(\varphi)>\frac{k}{2}\right] \leq \frac{1}{2} .
$$

We say that v is φ-rich if v has at most $\frac{k}{2} \varphi$-poor neighbors. Hence,

$$
\operatorname{Pr}[v \text { is } \varphi \text {-rich }] \geq \frac{1}{2}
$$

Consequently,
$E[a(G, \varphi, v)] \geq \operatorname{Pr}[v$ is φ-rich $] \cdot E[a(G, \varphi, v) \mid v$ is φ-rich $] \geq \frac{1}{2} E[a(G, \varphi, v) \mid v$ is φ-rich $]$, and thus it suffices to show that

$$
E[a(G, \varphi, v) \mid v \text { is } \varphi \text {-rich }] \geq 2 \ell .
$$

Note that since G is triangle-free, the neighborhood $N(v)$ of v is an independent set, and thus whether v is φ-rich depends only on the restriction of φ to $V(G) \backslash N[v]$. Hence, it suffices to show that for every k-coloring ψ_{0} of $G-N[v]$ such that v is ψ_{0}-rich and ψ_{0} can be extended to a k-coloring of $G-v$,

$$
E\left[a(G, \varphi, v) \mid \varphi \text { extends } \psi_{0}\right] \geq 2 \ell
$$

Let R be the set of the neighbors of v that are not ψ_{0}-poor. Observe it it suffices to show that for any k-coloring ψ of $G-R-v$ extending ψ_{0}, we have

$$
E[a(G, \varphi, v) \mid \varphi \text { extends } \psi] \geq 2 \ell .
$$

Let A be the set of colors that ψ does not use on the neighbors of v; since v is ψ-rich, we have $|A| \geq k / 2$. For each $u \in R$, let L_{u} be the set of colors not used by ψ on the neighbors of u. For $c \in A$, let X_{c} denote the event that φ
does not use c on the neighbors of v. Observe that

$$
\begin{aligned}
& E[a(G, \varphi, v) \mid \varphi \text { extends } \psi] \\
& =\sum_{c \in A} \operatorname{Pr}\left[X_{c} \mid \varphi \text { extends } \psi\right] \\
& =\sum_{c \in A} \prod_{u \in R: c \in L_{u}}\left(1-1 /\left|L_{u}\right|\right) \\
& \geq|A|\left(\prod_{c \in A} \prod_{u \in R: c \in L_{u}}\left(1-1 /\left|L_{u}\right|\right)\right)^{1 /|A|} \\
& =|A|\left(\prod_{u \in R} \prod_{c \in L_{u} \cap A}\left(1-1 /\left|L_{u}\right|\right)\right)^{1 /|A|} \\
& \geq|A|\left(\prod_{u \in R}\left(1-1 /\left|L_{u}\right|\right)^{|L(u)|}\right)^{1 /|A|} \\
& \geq|A|\left(\prod_{u \in R}(1-1 / t)^{t}\right)^{1 /|A|} \geq|A|(1-1 / t)^{t \Delta /|A|} \quad\left(\text { since }\left|L_{u}\right| \geq t \text { and }|R| \leq \Delta\right) \\
& \geq|A| 4^{-\Delta /|A|} \geq \frac{k}{2} 4^{-2 \Delta / k} \geq \frac{k}{2 \cdot 4^{\frac{1}{2} \log \Delta}} \quad \text { (since } t \geq 2 \text { and }|A| \geq k / 2 \text {) } \\
& \geq 2 \frac{\Delta^{1-\log 2}}{\log \Delta}=2 \ell . \\
& \text { (AG inequality) } \\
& \text { (since } t \geq 2 \text { and }|A| \geq k / 2 \text {) }
\end{aligned}
$$

This finishes the proof.
Corollary 4. If G is a triangle-free graph with n vertices and maximum degree Δ, then G has an independent set of size

$$
\Omega(\max (n \log \Delta / \Delta, \sqrt{n \log n}))
$$

Hence, the Ramsey number $R(3, m)$ is $O\left(\frac{m^{2}}{\log m}\right)$.
Proof. Since G has chromatic number $O(\Delta / \log \Delta)$, the largest color class has size $\Omega(n \log \Delta / \Delta)$. If $\Delta=\Omega(\sqrt{n \log n})$, then the neighborhood of a vertex of maximum degree is an independent set of size $\Omega(\sqrt{n \log n})$. Otherwise, $\Delta=O(\sqrt{n \log n})$ and $\Omega(n \log \Delta / \Delta)=\Omega(\sqrt{n \log n})$. Hence, if $n \geq c \frac{m^{2}}{\log m}$ for a sufficiently large constant c, then G has an independent set of size $\Omega(\sqrt{n \log n}) \geq m$.

All these bounds are tight (but proving this is non-trivial).

