
Coloring of triangle-free graphs and the
Rosenfeld counting method
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There are many constructions that show that triangle-free graphs can
have arbitrarily large chromatic number. Let us give one that shows that
being triangle-free does not help to get better bound on the chromatic number
even for degenerate graphs.

Lemma 1. For every integer d ≥ 1, there exists a d-degenerate graph Gd of
girth at least six and of chromatic number d+ 1.

Proof. We prove the claim by induction on d. For d = 1, we can take
G1 = K2. Suppose now that d ≥ 2. The graph Gd is obtained as follows.
We start with an independent set K of size d(|V (Gd−1)| − 1) + 1 and with( |K|
|V (Gd−1)|

)
copies of Gd−1. For each subset S of K of size |V (Gd−1)|, we then

choose a distinct copy GS of Gd−1 and add a perfect matching between S
and V (GS). Observe that Gd has girth at least six, as any cycle is either
contained in a copy of Gd−1, or contains edges of at least two copies of Gd−1

and passes through K. Moreover, Gd is d-degenerate, as each copy of Gd−1

is (d − 1)-degenerate and the degrees of its vertices are increased only by 1
in Gd.

Suppose for a contradiction that Gd can be colored using at most d colors.
By the pigeonhole principle, some set S ⊆ K of size |V (Gd−1)| is colored using
just one color. But then the copy GS of Gd−1 would be colored using only
the remaining d− 1 colors, which is a contradiction.

However, we can get an improvement in terms of the maximum degree.
We give a relatively recent proof of Martinsson, which uses an idea based on
a counting argument of Rosenfeld. To illustrate the method, let us start with
a simpler example. Recall that a star coloring is a proper coloring in which
any two color classes induce a star forest (or equivalently, at least three colors
appear on any 4-vertex path).
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Theorem 2. For any positive integer ∆, any graph of maximum degree at
most ∆ has a star coloring by at most d13∆3/2e colors.
Proof. Let k = d13∆3/2e and β = k/3. Let C(G) be the set of all star
colorings of G using colors {1, . . . , k}. We will prove that if G is a graph of
maximum degree at most ∆, then for every v ∈ V (G), we have

|C(G)|
|C(G− v)|

≥ β.

This clearly implies C(G) 6= ∅, and in fact that G has at least β|V (G)| star
colorings by at most k colors. We prove the claim by induction on the
number of vertices of G. When |V (G)| = 1, we have |C(G)| = k > β
and |C(G − v)| = 1, and thus the claim holds. Hence, we can assume that
|V (G)| > 1.

Let Cv(G) be the set of proper k-colorings of G whose restriction to G−v
is a star coloring. Note that any coloring in C(G − v) can be extended to
a coloring in Cv(G) by choosing a color of v different from the color of the
neighbors of v, and this can be done in at least k −∆ ways. Hence,

|Cv(G)| ≥ (k −∆)|C(G− v)|.

For a 4-vertex path P containing v, let CP be the set of colorings in Cv that
use only two colors on P . Letting P be the set of all 4-vertex paths in G
containing v, we have

C(G) = Cv \
⋃
P∈P

CP .

Hence, we need to bound |CP |. Note that each coloring in CP is obtained
from a star coloring of G− V (P ) by choosing the two colors used on P , and
thus (using the induction hypothesis),

|CP | ≤ k2|C(G− V (P ))| ≤ k2

β3
|C(G− v)|.

Putting these bounds together, we have

|C(G)| ≥ |Cv| −
∑
P∈P

|CP |

≥ (k −∆)|C(G− v)| − |P| · k
2

β3
|C(G− v)|

=

(
k −∆− 2∆3 · k

2

β3

)
|C(G− v)|

≥ β|C(G− v)|.
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Let us now give a (somewhat more involved) argument for the chromatic
number of triangle-free graphs.

Theorem 3. For every ∆ ≥ 1010, every triangle-free graph of maximum
degree at most ∆ has chromatic number at most d4∆/ log ∆e.

Proof. Let k = d4∆/ log ∆e and ` = ∆1−log 2

log ∆
. For a graph G, let C(G) be the

set of all proper k-colorings of G. We will show that if G is a triangle-free
graph of maximum degree at most ∆, then for every v ∈ V (G), we have

|C(G)|
|C(G− v)|

≥ `.

This clearly implies C(G) 6= ∅, and in fact that G has at least `|V (G)| k-
colorings. We prove the claim by induction on the number of vertices of G.
When |V (G)| = 1, we have |C(G)| = k > ` and |C(G− v)| = 1, and thus the
claim holds. Hence, we can assume that |V (G)| > 1.

For a vertex x ∈ V (G) and a partial coloring ϕ of G, let a(G,ϕ, x) denote
the number of colors in {1, . . . , k} that do not appear on the neighbors of x
in ϕ. Note that each coloring ϕ ∈ C(G − v) extends to a proper k-coloring
of G in exactly a(G,ϕ, v) ways, and thus

|C(G)|
|C(G− v)|

=

∑
ϕ∈C(G−v) a(G,ϕ, v)

|C(G− v)
= E[a(G,ϕ, v)],

where the expectation is over a k-coloring ϕ of G − v chosen uniformly at
random. Hence, we need to prove that

E[a(G,ϕ, v)] ≥ `.

Let t = `
log ∆

≥ 2; we say a neighbor u of v is ϕ-poor if a(G − v, ϕ, u) ≤ t.

Consider any k-coloring ψ of G−v−u. If a(G−v, ψ, u) > t, then ψ does not
extend to any k-coloring ϕ of G−v such that u is ϕ-poor; if a(G−v, ψ, u) ≤ t,
then ψ extends to exactly a(G− v, ψ, u) ≤ t k-colorings ϕ of G− v such that
u is ϕ-poor. Hence, using the induction hypothesis for G − v and u, the
number of k-colorings of G− v such that u is ϕ-poor is at most

t · |C(G− v − u)| ≤ t

`
|C(G− v)|,

and thus

Pr[u is ϕ-poor] ≤ t

`
.
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Let q(ϕ) denote the number of ϕ-poor neighbors of v. Then

E[q(ϕ)] ≤ t

`
· deg v ≤ t∆

`
≤ k

4
,

and thus

Pr

[
q(ϕ) >

k

2

]
≤ 1

2
.

We say that v is ϕ-rich if v has at most k
2
ϕ-poor neighbors. Hence,

Pr[v is ϕ-rich] ≥ 1

2
.

Consequently,

E[a(G,ϕ, v)] ≥ Pr[v is ϕ-rich]·E[a(G,ϕ, v)|v is ϕ-rich] ≥ 1

2
E[a(G,ϕ, v)|v is ϕ-rich],

and thus it suffices to show that

E[a(G,ϕ, v)|v is ϕ-rich] ≥ 2`.

Note that since G is triangle-free, the neighborhood N(v) of v is an inde-
pendent set, and thus whether v is ϕ-rich depends only on the restriction of
ϕ to V (G) \ N [v]. Hence, it suffices to show that for every k-coloring ψ0 of
G − N [v] such that v is ψ0-rich and ψ0 can be extended to a k-coloring of
G− v,

E[a(G,ϕ, v)|ϕ extends ψ0] ≥ 2`.

Let R be the set of the neighbors of v that are not ψ0-poor. Observe it it
suffices to show that for any k-coloring ψ of G−R−v extending ψ0, we have

E[a(G,ϕ, v)|ϕ extends ψ] ≥ 2`.

Let A be the set of colors that ψ does not use on the neighbors of v; since v
is ψ-rich, we have |A| ≥ k/2. For each u ∈ R, let Lu be the set of colors not
used by ψ on the neighbors of u. For c ∈ A, let Xc denote the event that ϕ
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does not use c on the neighbors of v. Observe that

E[a(G,ϕ, v)|ϕ extends ψ]

=
∑
c∈A

Pr[Xc|ϕ extends ψ]

=
∑
c∈A

∏
u∈R:c∈Lu

(1− 1/|Lu|)

≥ |A|

(∏
c∈A

∏
u∈R:c∈Lu

(1− 1/|Lu|)

)1/|A|

(AG inequality)

= |A|

(∏
u∈R

∏
c∈Lu∩A

(1− 1/|Lu|)

)1/|A|

≥ |A|

(∏
u∈R

(1− 1/|Lu|)|L(u)|

)1/|A|

≥ |A|

(∏
u∈R

(1− 1/t)t

)1/|A|

≥ |A|(1− 1/t)t∆/|A| (since |Lu| ≥ t and |R| ≤ ∆)

≥ |A|4−∆/|A| ≥ k

2
4−2∆/k ≥ k

2 · 4 1
2

log ∆
(since t ≥ 2 and |A| ≥ k/2)

≥ 2
∆1−log 2

log ∆
= 2`.

This finishes the proof.

Corollary 4. If G is a triangle-free graph with n vertices and maximum
degree ∆, then G has an independent set of size

Ω
(

max
(
n log ∆/∆,

√
n log n

))
.

Hence, the Ramsey number R(3,m) is O
(

m2

logm

)
.

Proof. Since G has chromatic number O(∆/ log ∆), the largest color class has
size Ω(n log ∆/∆). If ∆ = Ω(

√
n log n), then the neighborhood of a vertex

of maximum degree is an independent set of size Ω(
√
n log n). Otherwise,

∆ = O(
√
n log n) and Ω(n log ∆/∆) = Ω(

√
n log n). Hence, if n ≥ c m2

logm

for a sufficiently large constant c, then G has an independent set of size
Ω(
√
n log n) ≥ m.

All these bounds are tight (but proving this is non-trivial).
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