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There are many constructions that show that triangle-free graphs can
have arbitrarily large chromatic number. Let us give one that shows that
being triangle-free does not help to get better bound on the chromatic number
even for degenerate graphs.

Lemma 1. For every integer d > 1, there exists a d-degenerate graph Gy of
girth at least six and of chromatic number d + 1.

Proof. We prove the claim by induction on d. For d = 1, we can take
G7 = Ks. Suppose now that d > 2. The graph G4 is obtained as follows.
We start with an independent set K of size d(|]V(Gq_1)| — 1) + 1 and with
(‘V(‘GIZL”) copies of G4_1. For each subset S of K of size |V (G4-1)|, we then
choose a distinct copy Gg of G4_1 and add a perfect matching between S
and V(Gg). Observe that Gy has girth at least six, as any cycle is either
contained in a copy of G4_1, or contains edges of at least two copies of Gy_1
and passes through K. Moreover, G, is d-degenerate, as each copy of G4
is (d — 1)-degenerate and the degrees of its vertices are increased only by 1
in Gd.

Suppose for a contradiction that GG4 can be colored using at most d colors.
By the pigeonhole principle, some set S C K of size |V (G4-1)] is colored using
just one color. But then the copy Gg of G4_; would be colored using only
the remaining d — 1 colors, which is a contradiction. O]

However, we can get an improvement in terms of the maximum degree.
We give a relatively recent proof of Martinsson, which uses an idea based on
a counting argument of Rosenfeld. To illustrate the method, let us start with
a simpler example. Recall that a star coloring is a proper coloring in which
any two color classes induce a star forest (or equivalently, at least three colors
appear on any 4-vertex path).



Theorem 2. For any positive integer A, any graph of maximum degree at
most A has a star coloring by at most [13A%2] colors.

Proof. Let k = [13A%?] and B = k/3. Let C(G) be the set of all star
colorings of G using colors {1,...,k}. We will prove that if G is a graph of
maximum degree at most A, then for every v € V(G), we have
el .,
IC(G =)

This clearly implies C(G) # (), and in fact that G has at least 8IV(@)I star
colorings by at most k£ colors. We prove the claim by induction on the
number of vertices of G. When |V(G)| = 1, we have [C(G)| = k >
and |C(G —v)| = 1, and thus the claim holds. Hence, we can assume that
V(G)| > 1.

Let C,(G) be the set of proper k-colorings of G whose restriction to G — v
is a star coloring. Note that any coloring in C(G — v) can be extended to
a coloring in C,(G) by choosing a color of v different from the color of the
neighbors of v, and this can be done in at least £k — A ways. Hence,

Co(G)] = (k= A)C(G = ).

For a 4-vertex path P containing v, let Cp be the set of colorings in C, that
use only two colors on P. Letting P be the set of all 4-vertex paths in G
containing v, we have
c(@)=¢,\ | cr
PeP

Hence, we need to bound |[Cp|. Note that each coloring in Cp is obtained
from a star coloring of G — V' (P) by choosing the two colors used on P, and
thus (using the induction hypothesis),

k}2

Cpl < K*|C(G = V(P))| < 7/C(G =)l
Putting these bounds together, we have
c@) = el = Icp
PeP
k2
> (k= A)|C(G —v)[ = |P[- @IC(G — )]
k2
= (k—A—QA?“@) IC(G — v)|
> BIC(G —v)l.



Let us now give a (somewhat more involved) argument for the chromatic
number of triangle-free graphs.

Theorem 3. For every A > 10'°, every triangle-free graph of maximum
degree at most A has chromatic number at most [4A/log A].

Proof. Let k = [4A/log A] and ¢ = AI?DAgQ. For a graph G, let C(G) be the
set of all proper k-colorings of G. We will show that if G is a triangle-free
graph of maximum degree at most A, then for every v € V(G), we have

(@)
G —v ="

This clearly implies C(G) # ), and in fact that G has at least (V@) k-
colorings. We prove the claim by induction on the number of vertices of G.
When |[V(G)| = 1, we have |C(G)| = k > ¢ and |C(G — v)| = 1, and thus the
claim holds. Hence, we can assume that |V(G)| > 1.

For a vertex x € V(@) and a partial coloring ¢ of G, let a(G, ¢, ) denote
the number of colors in {1,...,k} that do not appear on the neighbors of x
in ¢. Note that each coloring ¢ € C(G — v) extends to a proper k-coloring
of G in exactly a(G, ¢,v) ways, and thus

G zapEC(G—v)a(Gv ©,) B
C(G—v)| C(G—0) = Ela(G, ¢,v)],

where the expectation is over a k-coloring ¢ of G — v chosen uniformly at
random. Hence, we need to prove that

Ela(G,p,v)] > L.

Let t = ﬁ > 2; we say a neighbor u of v is p-poor if a(G — v, p,u) < t.
og

Consider any k-coloring 1) of G —v—u. If a(G —v, 1, u) > t, then ¢ does not

extend to any k-coloring ¢ of G—v such that u is p-poor; if a(G—v, v, u) < t,

then v extends to exactly a(G — v, 1, u) <t k-colorings ¢ of G — v such that

u is p-poor. Hence, using the induction hypothesis for G — v and u, the

number of k-colorings of G — v such that u is p-poor is at most
t
t-1C(G —v —u)[ < 510G — )],

and thus

|+

Prlu is ¢-poor] <



Let g(¢) denote the number of ¢-poor neighbors of v. Then

t tA k

Elq(p)] < Z-degv < 7 < T
and thus " )
P — < =.
o) > 5] <3

We say that v is o-rich if v has at most g p-poor neighbors. Hence,

Pr[v is ¢-rich] >

N | —

Consequently,

Ela(G,¢,v)] > Prlv is ¢-rich]-E[a(G, ¢, v)|v is ¢-rich] > %E[(I(G, @, v)|v is e-rich],

and thus it suffices to show that
Ela(G, p,v)|v is @-rich] > 2¢.

Note that since G is triangle-free, the neighborhood N(v) of v is an inde-
pendent set, and thus whether v is p-rich depends only on the restriction of
¢ to V(G) \ Nv]. Hence, it suffices to show that for every k-coloring 1 of
G — N[v] such that v is tg-rich and 1)y can be extended to a k-coloring of
G —w,

Ela(G, p,v)|¢ extends 1] > 2¢.

Let R be the set of the neighbors of v that are not ¥g-poor. Observe it it
suffices to show that for any k-coloring 1) of G — R — v extending vy, we have
Ela(G, p,v)|¢ extends 1] > 20.

Let A be the set of colors that 1) does not use on the neighbors of v; since v
is 1-rich, we have |A| > k/2. For each u € R, let L, be the set of colors not
used by 1 on the neighbors of u. For ¢ € A, let X, denote the event that ¢



does not use ¢ on the neighbors of v. Observe that

Ela(G, ¢,v)|¢ extends 9]
= Z Pr[X.|¢ extends 9]

ceA

=>  JI a-1/L.)

cEA u€ER:cEL,,

1/14]
> |A| H H (1—1/|L.)) ) (AG inequality)

c€EAUER:cEL,,

1/|A|
(11 17 - 1/|Lu|>)

u€ER ceL,NA

1141
> Al (- 1/|Lu|)L(")|)

uER

1/14]
> | A H(l - l/t)t> > |A|(1 = 1/t)"™A (since |L,| >t and |R| < A)

uER

k k
> | A4S > 24 20 /k m (since t > 2 and |A| > k/2)
1—log2
> 2A =2/
log A
This finishes the proof. O

Corollary 4. If G is a triangle-free graph with n vertices and mazimum
degree A, then G has an independent set of size

Q (max(n log A/A, m» :

Hence, the Ramsey number R(3,m) is O(

logm)

Proof. Since G has chromatic number O(A/log A), the largest color class has
size Q(nlog A/A). If A = Q(y/nlogn), then the neighborhood of a vertex
of maximum degree is an independent set of size 2(y/nlogn). Otherw1se

A = O(yv/nlogn) and Q(nlogA/A) = Q(y/nlogn). Hence, if n > clogm

for a sufficiently large constant ¢, then GG has an independent set of size

Q(yv/nlogn) > m. O

All these bounds are tight (but proving this is non-trivial).




