Coloring of triangle-free graphs and the Rosenfeld counting method

Zdeněk Dvořák

January 3, 2022

There are many constructions that show that triangle-free graphs can have arbitrarily large chromatic number. Let us give one that shows that being triangle-free does not help to get better bound on the chromatic number even for degenerate graphs.

Lemma 1. For every integer $d \ge 1$, there exists a d-degenerate graph G_d of girth at least six and of chromatic number d + 1.

Proof. We prove the claim by induction on d. For d = 1, we can take $G_1 = K_2$. Suppose now that $d \geq 2$. The graph G_d is obtained as follows. We start with an independent set K of size $d(|V(G_{d-1})| - 1) + 1$ and with $\binom{|K|}{|V(G_{d-1})|}$ copies of G_{d-1} . For each subset S of K of size $|V(G_{d-1})|$, we then choose a distinct copy G_S of G_{d-1} and add a perfect matching between S and $V(G_S)$. Observe that G_d has girth at least six, as any cycle is either contained in a copy of G_{d-1} , or contains edges of at least two copies of G_{d-1} and passes through K. Moreover, G_d is d-degenerate, as each copy of G_{d-1} is (d-1)-degenerate and the degrees of its vertices are increased only by 1 in G_d .

Suppose for a contradiction that G_d can be colored using at most d colors. By the pigeonhole principle, some set $S \subseteq K$ of size $|V(G_{d-1})|$ is colored using just one color. But then the copy G_S of G_{d-1} would be colored using only the remaining d-1 colors, which is a contradiction.

However, we can get an improvement in terms of the maximum degree. We give a relatively recent proof of Martinsson, which uses an idea based on a counting argument of Rosenfeld. To illustrate the method, let us start with a simpler example. Recall that a *star coloring* is a proper coloring in which any two color classes induce a star forest (or equivalently, at least three colors appear on any 4-vertex path).

Theorem 2. For any positive integer Δ , any graph of maximum degree at most Δ has a star coloring by at most $\lceil 13\Delta^{3/2} \rceil$ colors.

Proof. Let $k = \lceil 13\Delta^{3/2} \rceil$ and $\beta = k/3$. Let $\mathcal{C}(G)$ be the set of all star colorings of G using colors $\{1, \ldots, k\}$. We will prove that if G is a graph of maximum degree at most Δ , then for every $v \in V(G)$, we have

$$\frac{|\mathcal{C}(G)|}{|\mathcal{C}(G-v)|} \ge \beta.$$

This clearly implies $\mathcal{C}(G) \neq \emptyset$, and in fact that G has at least $\beta^{|V(G)|}$ star colorings by at most k colors. We prove the claim by induction on the number of vertices of G. When |V(G)| = 1, we have $|\mathcal{C}(G)| = k > \beta$ and $|\mathcal{C}(G-v)| = 1$, and thus the claim holds. Hence, we can assume that |V(G)| > 1.

Let $C_v(G)$ be the set of proper k-colorings of G whose restriction to G-v is a star coloring. Note that any coloring in C(G-v) can be extended to a coloring in $C_v(G)$ by choosing a color of v different from the color of the neighbors of v, and this can be done in at least $k - \Delta$ ways. Hence,

$$|\mathcal{C}_v(G)| \ge (k - \Delta)|\mathcal{C}(G - v)|.$$

For a 4-vertex path P containing v, let C_P be the set of colorings in C_v that use only two colors on P. Letting \mathcal{P} be the set of all 4-vertex paths in Gcontaining v, we have

$$\mathcal{C}(G) = \mathcal{C}_v \setminus \bigcup_{P \in \mathcal{P}} \mathcal{C}_P.$$

Hence, we need to bound $|\mathcal{C}_P|$. Note that each coloring in \mathcal{C}_P is obtained from a star coloring of G - V(P) by choosing the two colors used on P, and thus (using the induction hypothesis),

$$|\mathcal{C}_P| \le k^2 |\mathcal{C}(G - V(P))| \le \frac{k^2}{\beta^3} |\mathcal{C}(G - v)|.$$

Putting these bounds together, we have

$$\begin{aligned} |\mathcal{C}(G)| &\geq |\mathcal{C}_{v}| - \sum_{P \in \mathcal{P}} |\mathcal{C}_{P}| \\ &\geq (k - \Delta) |\mathcal{C}(G - v)| - |\mathcal{P}| \cdot \frac{k^{2}}{\beta^{3}} |\mathcal{C}(G - v)| \\ &= \left(k - \Delta - 2\Delta^{3} \cdot \frac{k^{2}}{\beta^{3}}\right) |\mathcal{C}(G - v)| \\ &\geq \beta |\mathcal{C}(G - v)|. \end{aligned}$$

- 6		
- 6		

Let us now give a (somewhat more involved) argument for the chromatic number of triangle-free graphs.

Theorem 3. For every $\Delta \geq 10^{10}$, every triangle-free graph of maximum degree at most Δ has chromatic number at most $\lceil 4\Delta / \log \Delta \rceil$.

Proof. Let $k = \lfloor 4\Delta/\log \Delta \rfloor$ and $\ell = \frac{\Delta^{1-\log 2}}{\log \Delta}$. For a graph G, let $\mathcal{C}(G)$ be the set of all proper k-colorings of G. We will show that if G is a triangle-free graph of maximum degree at most Δ , then for every $v \in V(G)$, we have

$$\frac{|\mathcal{C}(G)|}{|\mathcal{C}(G-v)|} \ge \ell.$$

This clearly implies $\mathcal{C}(G) \neq \emptyset$, and in fact that G has at least $\ell^{|V(G)|}$ kcolorings. We prove the claim by induction on the number of vertices of G. When |V(G)| = 1, we have $|\mathcal{C}(G)| = k > \ell$ and $|\mathcal{C}(G - v)| = 1$, and thus the claim holds. Hence, we can assume that |V(G)| > 1.

For a vertex $x \in V(G)$ and a partial coloring φ of G, let $a(G, \varphi, x)$ denote the number of colors in $\{1, \ldots, k\}$ that do not appear on the neighbors of xin φ . Note that each coloring $\varphi \in \mathcal{C}(G - v)$ extends to a proper k-coloring of G in exactly $a(G, \varphi, v)$ ways, and thus

$$\frac{|\mathcal{C}(G)|}{|\mathcal{C}(G-v)|} = \frac{\sum_{\varphi \in \mathcal{C}(G-v)} a(G,\varphi,v)}{|\mathcal{C}(G-v)|} = E[a(G,\varphi,v)],$$

where the expectation is over a k-coloring φ of G - v chosen uniformly at random. Hence, we need to prove that

$$E[a(G,\varphi,v)] \ge \ell.$$

Let $t = \frac{\ell}{\log \Delta} \geq 2$; we say a neighbor u of v is φ -poor if $a(G - v, \varphi, u) \leq t$. Consider any k-coloring ψ of G - v - u. If $a(G - v, \psi, u) > t$, then ψ does not extend to any k-coloring φ of G - v such that u is φ -poor; if $a(G - v, \psi, u) \leq t$, then ψ extends to exactly $a(G - v, \psi, u) \leq t$ k-colorings φ of G - v such that u is φ -poor. Hence, using the induction hypothesis for G - v and u, the number of k-colorings of G - v such that u is φ -poor is at most

$$t \cdot |\mathcal{C}(G - v - u)| \le \frac{t}{\ell} |\mathcal{C}(G - v)|,$$

and thus

$$\Pr[u \text{ is } \varphi \text{-poor}] \le \frac{t}{\ell}.$$

Let $q(\varphi)$ denote the number of φ -poor neighbors of v. Then

$$E[q(\varphi)] \le \frac{t}{\ell} \cdot \deg v \le \frac{t\Delta}{\ell} \le \frac{k}{4},$$

and thus

$$\Pr\left[q(\varphi) > \frac{k}{2}\right] \le \frac{1}{2}$$

We say that v is φ -rich if v has at most $\frac{k}{2} \varphi$ -poor neighbors. Hence,

$$\Pr[v \text{ is } \varphi \text{-rich}] \ge \frac{1}{2}.$$

Consequently,

$$E[a(G,\varphi,v)] \ge \Pr[v \text{ is } \varphi \text{-rich}] \cdot E[a(G,\varphi,v)|v \text{ is } \varphi \text{-rich}] \ge \frac{1}{2}E[a(G,\varphi,v)|v \text{ is } \varphi \text{-rich}],$$

and thus it suffices to show that

$$E[a(G, \varphi, v)|v \text{ is } \varphi\text{-rich}] \ge 2\ell.$$

Note that since G is triangle-free, the neighborhood N(v) of v is an independent set, and thus whether v is φ -rich depends only on the restriction of φ to $V(G) \setminus N[v]$. Hence, it suffices to show that for every k-coloring ψ_0 of G - N[v] such that v is ψ_0 -rich and ψ_0 can be extended to a k-coloring of G - v,

$$E[a(G,\varphi,v)|\varphi \text{ extends } \psi_0] \ge 2\ell.$$

Let R be the set of the neighbors of v that are not ψ_0 -poor. Observe it it suffices to show that for any k-coloring ψ of G - R - v extending ψ_0 , we have

$$E[a(G,\varphi,v)|\varphi \text{ extends } \psi] \ge 2\ell.$$

Let A be the set of colors that ψ does not use on the neighbors of v; since v is ψ -rich, we have $|A| \ge k/2$. For each $u \in R$, let L_u be the set of colors not used by ψ on the neighbors of u. For $c \in A$, let X_c denote the event that φ

does not use c on the neighbors of v. Observe that

$$\begin{split} E[a(G,\varphi,v)|\varphi \text{ extends } \psi] \\ &= \sum_{c\in A} \Pr[X_c|\varphi \text{ extends } \psi] \\ &= \sum_{c\in A} \prod_{u\in R: c\in L_u} (1-1/|L_u|) \\ &\geq |A| \left(\prod_{c\in A} \prod_{u\in R: c\in L_u} (1-1/|L_u|)\right)^{1/|A|} \qquad (AG \text{ inequality}) \\ &= |A| \left(\prod_{u\in R} \prod_{c\in L_u\cap A} (1-1/|L_u|)\right)^{1/|A|} \\ &\geq |A| \left(\prod_{u\in R} (1-1/|L_u|)^{|L(u)|}\right)^{1/|A|} \\ &\geq |A| \left(\prod_{u\in R} (1-1/t)^t\right)^{1/|A|} \geq |A|(1-1/t)^{t\Delta/|A|} \quad (since \ |L_u| \geq t \ and \ |R| \leq \Delta) \\ &\geq |A|4^{-\Delta/|A|} \geq \frac{k}{2} 4^{-2\Delta/k} \geq \frac{k}{2 \cdot 4^{\frac{1}{2}\log \Delta}} \qquad (since \ t \geq 2 \ and \ |A| \geq k/2) \\ &\geq 2\frac{\Delta^{1-\log 2}}{\log \Delta} = 2\ell. \end{split}$$

This finishes the proof.

Corollary 4. If G is a triangle-free graph with n vertices and maximum degree Δ , then G has an independent set of size

$$\Omega\left(\max\left(n\log\Delta/\Delta,\sqrt{n\log n}\right)\right).$$

Hence, the Ramsey number R(3,m) is $O(\frac{m^2}{\log m})$.

Proof. Since G has chromatic number $O(\Delta/\log \Delta)$, the largest color class has size $\Omega(n \log \Delta/\Delta)$. If $\Delta = \Omega(\sqrt{n \log n})$, then the neighborhood of a vertex of maximum degree is an independent set of size $\Omega(\sqrt{n \log n})$. Otherwise, $\Delta = O(\sqrt{n \log n})$ and $\Omega(n \log \Delta/\Delta) = \Omega(\sqrt{n \log n})$. Hence, if $n \ge c \frac{m^2}{\log m}$ for a sufficiently large constant c, then G has an independent set of size $\Omega(\sqrt{n \log n}) \ge m$.

All these bounds are tight (but proving this is non-trivial).