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1 List coloring and choosability

A list assignment for a graph G is a function L that to each vertex v ∈ V (G)
assigns a list L(v) of colors. An L-coloring of G is a proper coloring ϕ such
that ϕ(v) ∈ L(v) for all v ∈ V (G). The choosability χl(G) of G is the
minimum integer k such that G can be L-colored for every assignment L of
lists of size at least k.

Observation 1. Every graph G satisfies

χ(G) ≤ χl(G).

If G is d-degenerate, then
χl(G) ≤ d+ 1.

Choosability matches the chromatic number for many graphs (cycles,
cliques, . . . ). However, the choosability can be arbitrarily large compared
to the chromatic number, as the following result shows.

Lemma 2. For every positive integer a,

χl(Ka,aa) = a+ 1.

Proof. For every n, the bipartite graph Ka,n is a-degenerate, implying that
χl(Ka,n) ≤ a + 1. Hence, it suffices to show that there exists an assignment
of lists of size a to Ka,aa from that the graph cannot be colored.

Let A and B be the parts of Ka,aa , where |A| = a and |B| = aa.
Let A = {v1, . . . , va}. Since |B| is equal to the number of sequences of
numbers {1, . . . , a} of length a, we can label vertices of B as ui1,...,ia for
1 ≤ i1, . . . , ia ≤ a. Let us give vertices of A pairwise disjoint lists, say
L(vi) = {(i, 1), (i, 2), . . . , (i, a)} for 1 ≤ i ≤ a. We give vertices of B different
lists, each of them intersecting the list of each vertex of A in exactly one
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color; say L(ui1,...,ia) = {(1, i1), (2, i2), . . . , (a, ia)} for 1 ≤ i1, . . . , ia ≤ a. We
claim that Ka,aa is not L-colorable; indeed, if we give vertices of A colors
(1, c1), (2, c2), . . . , (a, ca), then all colors in the list of the vertex uc1,c2,...,ca
are used on its neighbors, and thus this vertex cannot be colored.

On the other hand, we have the following positive result on choosability
of bipartite graphs.

Lemma 3. For every positive integer n,

χl(Kn,n) ≤ blog2 nc+ 2.

Proof. Let c = blog2 nc + 2 and let L be any assignment of lists of size at
least c to vertices of Kn,n. Let A and B be the parts of Kn,n. For each color,
we flip a fair coin and according to the result we delete it either from the lists
of all vertices of A or from the lists of all vertices of B. Afterwards, the lists
of vertices of A are disjoint from the lists of vertices of B, and thus if these
lists are non-empty, we can properly color Kn,n. The probability that a list
of a vertex v ∈ V (Kn,n) becomes empty is at most 2−c. Hence, the expected
number of empty lists is at most

2−c|V (Kn,n|) =
2n

2blog2 nc+2
< 1.

Hence, with non-zero probability, all the lists are non-empty, and thus Kn,n

can be L-colored. Since the choice of L was arbitrary, it follows that χl(Kn,n) ≤
c as required.

Note that

χl(Kn,n) ≥ log2 n

log2 log2 n

by Lemma 2; a more involved argument shows that actually χl(Kn,n) =
Ω(log n).

2 Planar graphs

By Observation 1, all planar graphs are 6-choosable. Thomassen proved that
they are actually 5-choosable, strengthening the 5-color theorem. In fact, he
proved the following stronger claim.

Theorem 4. Let G be a plane graph, let p1p2 be an edge contained in the
boundary of its outer face, and let L be a list assignment for G satisfying the
following.
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• |L(v)| ≥ 5 for every vertex v ∈ V (G) not incident with the outer face.

• |L(v)| ≥ 3 for every vertex v ∈ V (G) incident with the outer face and
distinct from p1 and p2.

• |L(p1)|, |L(p2)| ≥ 1, and if |L(p1)| = |L(p2)| = 1, then L(p1) 6= L(p2).

Then G is L-colorable.

Proof. We proceed by induction on the number of vertices of G. The case
|V (G)| = 2 is trivial, hence assume |V (G)| ≥ 3.

We can assume G is connected, otherwise we apply induction to each
component of G. Furthermore, we can assume G is 2-connected. Otherwise,
G = G1 ∪ G2 for proper induced subgraphs G1 and G2 of G intersecting in
exactly one vertex v. We can assume that p1p2 ∈ E(G1). By the induction
hypothesis, there exists an L-coloring ϕ1 of G1. Let L′(v) = {ϕ1(v)} and
L′(x) = L(x) for all x ∈ V (G2) \ {v}. Then G2 with the list assignment
L′ satisfies the assumptions of the theorem (with v and one of its neighbors
playing the role of p1p2), and thus G2 has an L′-coloring ϕ2. The colorings
ϕ1 and ϕ2 together give an L-coloring of G.

Since G is 2-connected, its outer face is bounded by a cycle C. We
can assume that the cycle C is induced. Otherwise, if C has a chord v1v2,
then G = G1 ∪ G2 for proper induced subgraphs G1 and G2 of G intersect-
ing exactly in v1v2. We can assume that p1p2 ∈ E(G1). By the induction
hypothesis, there exists an L-coloring ϕ1 of G1. Let L′(v1) = {ϕ1(v1)},
L′(v2) = {ϕ1(v2)} and L′(x) = L(x) for all x ∈ V (G2) \ {v1, v2}. Then G2

with the list assignment L′ satisfies the assumptions of the theorem (with v1v2

playing the role of p1p2), and thus G2 has an L′-coloring ϕ2. The colorings
ϕ1 and ϕ2 together give an L-coloring of G.

We can also assume that |L(p1)| = |L(p2)| = 1, as otherwise we can throw
away extra colors from their lists. Let C = p1p2p3 . . . pk. By the assumptions,
|L(p3)| ≥ 3, and thus there exist two distinct colors c1, c2 ∈ L(p3) \ L(p2).
Let t ≥ 3 be the maximum integer such that {c1, c2} ⊆ L(pi) for 3 ≤ i ≤ t.
Let v = pt+1 if t < k and v = p1 if t = k. By the choice of t and since
|L(p1)| = 1, we can assume that c2 6∈ L(v). Let G′ = G − {p3, . . . , pt} and
let L′ be the list assignment for G′ such that L′(p2) = L(p2), L′(v) = L(v),
L′(x) = L(x) if x ∈ V (G′) \ {v, p2} has no neighbor in {p3, . . . , pt}, and
L′(x) = L(x) \ {c1, c2} otherwise. Since the outer face of G is bounded by
an induced cycle C, if x ∈ V (G′) \ {v, p2} has a neighbor in {p3, . . . , pt},
then x 6∈ V (C), and thus |L(x)| ≥ 5 and |L′(x)| ≥ 3; furthermore, such a
vertex x is contained in the boundary of the outer face of G′. We conclude
that G′ with the list assignment L′ satisfies the assumptions of the theorem,
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and thus G′ has an L′-coloring ϕ′ by the induction hypothesis. By the choice
of L′, none of the neighbors of {p3, . . . , pt} in G′ except for v can be given
color c1 or c2. Recall also that c2 6∈ L(v), and thus ϕ′(v) 6= c2. Hence, we
can extend ϕ′ to an L-coloring of G by giving pt, pt−2, . . . the color c2 and
pt−1, pt−3, . . . the color c1.

However, in contrast to the Four Color Theorem, not all planar graphs
are 4-choosable.

Lemma 5. There exists a planar graph G that is not 4-choosable.

Proof. Let Guwv be the following graph.

u w v

z1 z2

z3

Let La,m,b (with distinct a,m, b 6∈ {11, 12}) be the list assignment such
that La,m,b(z1) = {a,m, 11, 12}, La,m,b(z2) = {m, b, 11, 12}, and La,m,b(z3) =
{a, b, 11, 12}. Then a precoloring of (u,w, v) by colors (a,m, b) cannot be
extended to an La,m,b-coloring of Guwv.

Let Guv be the graph formed by two copies of Guwv sharing the path uwv.
Let La,b (with distinct a, b 6∈ {9, 10, 11, 12}) be the list assigment matching
La,9,b in one of the copies, La,10,b in the other copy, and with La,b(w) =
{a, b, 9, 10}. Then a precoloring of (u, v) by colors {a, b} cannot be extended
to an La,b-coloring of Guv.

Let G be the graph formed by 16 copies of Guv sharing the vertices u
and v. Let L(u) = {1, 2, 3, 4}, L(v) = {5, 6, 7, 8}, and let L match La,b for
a ∈ {1, 2, 3, 4} and b ∈ {5, 6, 7, 8} on the 16 copies of Guv. Then G is not
L-colorable.

3 Degree choosability

We want to obtain a list version of Brooks’ theorem.
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Theorem 6 (Brooks). Let G be a connected graph of maximum degree at
most ∆. If G is not ∆-colorable, then either G = K∆+1, or ∆ = 2 and G is
an odd cycle.

A degree assignment to a graph G is a list assignment such that |L(v)| ≥
deg(v) for all v ∈ V (G).

Lemma 7. Let G be a connected graph and let L be a degree assignment for
G. If G is not L-colorable, then |L(v)| = deg(v) for all v ∈ V (G).

Proof. If |L(v)| > deg(v), then let v1, . . . , vn be a listing of vertices of G in
non-increasing order according to their distance from v; hence, vn = v and
for 1 ≤ i ≤ n − 1, the vertex vi has a neighbor vj with j > i (the neighbor
of vi on a shortest path from vi to v). Let us greedily L-color v1, . . . , vn in
order. For 1 ≤ i ≤ n−1, at least one neighbor of vi has not been colored yet,
and thus at most deg(vi) − 1 < |L(vi)| colors need to be avoided. At vn, at
most deg(vn) < |L(vn)| colors need to be avoided. Hence, in both cases, we
can give vi a color from its list different from the colors of its neighbors.

Corollary 8. Let G be a connected graph and let L be a degree assignment
for G. If G is not L-colorable, uv ∈ E(G) and u is not a cutvertex in G,
then L(u) ⊆ L(v).

Proof. Otherwise, there exists a color c ∈ L(u) \ L(v). Let G′ = G − u;
since u is not a cutvertex, G′ is connected. Let L′(x) = L(x) \ {c} for all
neighbors x of u and L′(x) = L(x) for all non-neighbors x. Note that the list
size decreases only for neighbors x of u for which degG′(x) = degG(x) − 1,
and thus L′ is a degree assignment for G′. Furthermore, |L′(v)| = |L(v)| ≥
degG(v) > degG′(v), and thus G′ is L′-colorable by Lemma 7. We can extend
this coloring to an L-coloring of G by giving v color c.

Note that if neither u nor v is a cutvertex, then Corollary 8 implies
L(u) ⊆ L(v) and L(v) ⊆ L(u), and thus L(u) = L(v).

Corollary 9. Let G be a 2-connected graph and let L be a degree assignment
for G. Then G is not L-colorable if and only if G is a clique or an odd cycle
and all vertices of G have the same list of length equal to the degree of vertices
of G.

Proof. The “if” part is trivial. For the “only if” part, suppose that G is
not L-colorable. Since G is 2-connected, Corollary 8 implies that any two
adjacent vertices of G have the same list, and consequently all the vertices
of G have the same list, say {1, . . . , d}, where d ≤ ∆(G). It follows that G
is not d-colorable, and thus either G = Kd+1 or d = 2 and G is an odd cycle
by Theorem 6.
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A Gallai tree is a connected graph T such that every 2-connected block
of T is either a clique or an odd cycle. Suppose B1, . . . , Bk are the blocks of
a Gallai tree T , and let S1, . . . , Sk be sets of colors satisfying the following
conditions:

• For 1 ≤ i ≤ k, if Bi is a clique, then |Si| = |V (Bi)| − 1, and if Bi is an
odd cycle, then |Si| = 2.

• For 1 ≤ i < j ≤ k, if Bi ∩Bj 6= ∅, then Si ∩ Sj = ∅.

For v ∈ V (T ), let L(v) =
⋃

v∈Bi
Si. If a list assignment L can be expressed

in this way, we say that L is a blockwise uniform assignment for T .

Theorem 10 (Gallai). Let G be a connected graph and let L be a degree
assignment for G. Then G is not L-colorable if and only if G is a Gallai tree
and L is blockwise uniform.

Proof. It is easy to see that a Gallai tree cannot be colored from a blockwise
uniform assignment, and thus it suffices to prove the “only if” part. We do
the proof by induction on the number of vertices of G.

By Corollary 9, the claim holds when G is 2-connected. Hence, suppose
that G is not 2-connected. First, we prove that G is a Gallai tree. Let B be
a block of G. Since G is not 2-connected, there exists a leaf block B′ of G
distinct from B. Let v be a vertex of B′ which is not a cutvertex, and let
G′ = G − v. Let c be any color in L(v) and let L′(x) = L(x) \ {c} for all
neighbors x of v and L′(x) = L(x) for all other vertices x of G′. Note that
L′ is a degree assignment for G′ and that G′ is not L′-colorable, as otherwise
we can extend the coloring to an L-coloring of G by giving v the color c. By
the induction hypothesis, G′ is a Gallai tree. Note that B is also a block of
G′, and thus B is a clique or an odd cycle. As the choice of B was arbitrary,
all blocks of G are cliques or odd cycles, and thus G is a Gallai tree.

Let B1, . . . , Bk be the blocks of G, where without loss of generality Bk

is a leaf block. Let z be the cutvertex of Bk and let v be any other vertex of
Bk, and let Sk = L(v); by Corollary 8, we conclude that all non-cut vertices
of Bk have list Sk, and Sk ⊆ L(z). By Lemma 7, if Bk is a clique then |Sk| =
|Bk| − 1, and if Bk is an odd cycle, then |Sk| = 2. Let G′ = B1 ∪ . . . ∪Bk−1,
let L′(x) = L(x) for x ∈ V (G′) \ {z} and L′(z) = L(z) \ Sk. Note that L′

is a degree assignment for G′ and that G′ is not L′-colorable, as otherwise
the coloring would extend to an L-coloring of G by using the colors in Sk to
color Bk − z. By the induction hypothesis, L′ is blockwise uniform as shown
by sets S1, . . . , Sk−1. But then the sets S1, . . . , Sk−1, Sk show that L is
blockwise uniform.
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Corollary 11. Let G be a (c+1)-critical graph and let S be the set of vertices
of G of degree c. Then each component of G[S] is a Gallai tree.

Proof. Consider any component C of G[S]. Since G is (c+ 1)-critical, G−C
has a c-coloring ϕ. Let L be the list assignment to G[C] in which for each
v ∈ C, the list L(v) consists of those of colors {1, . . . , c} that are not used
by ϕ on the neighhbors of v. If v has k neighbors in V (G) \ V (C), then
degG[C](v) = degG(v)− k = c− k and |L(v)| ≥ c− k, and thus L is a degree
assignment for G[C]. An L-coloring of G[C] together with ϕ would give
a c-coloring of G; since G is (c + 1)-critical, we conclude that G[C] is not
L-colorable, and by Theorem 10, G[C] is a Gallai tree.
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