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1 Introduction and definitions

Note that a graph is k-colorable if and only if it can be covered by at most k
independent sets; i.e., we can assign value 0 or 1 to each independent set so
that the sum of the assigned values is at most k and each vertex is contained
in an independent set having value 1. This reformulation motivates the
following fractional relaxation. Let I(G) denote the set of all independent
sets in G.

Definition 1. The fractional chromatic number χf (G) of a graph G is the
minimum of ∑

I∈I(G)

xI ,

over all xI ≥ 0 for I ∈ I(G) such that∑
I∈I(G),v∈I

xI ≥ 1

holds for all v ∈ V (G).

By LP duality, we have the following alternate formulation.

Observation 1. The fractional chromatic number of a graph G is the max-
imum of ∑

v∈V (G)

yv,

over all yv ≥ 0 for v ∈ V (G) such that∑
v∈I

yv ≤ 1

holds for all I ∈ I(G).
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Let w : V (G)→ R+
0 be an assignment of nonnegative weights to vertices.

For X ⊆ V (G), let us define w(X) =
∑

v∈X w(v). Let

αw(G) = max{w(I) : I ∈ I(G)}.

Lemma 2.

χf (G) = max
w(V (G))

αw(G)
over all w : V (G)→ R+

0 , not identically 0.

Proof. Consider any w : V (G)→ R+
0 , not identically 0. Note that αw(G) ≥

max{w(v) : v ∈ V (G)} > 0. Let yv = w(v)
αw(G)

for all w ∈ V (G). This

assignment satisfies the constraints of Observation 1, and thus χf (G) ≥∑
v∈V (G) yv = w(V (G))

αw(G)
.

Conversely, let yv be the assignment satisfying the constraints of Obser-
vation 1 such that

∑
v∈V (G) yv = χf (G). Let w(v) = yv; the constraints

imply αw(G) ≤ 1, and thus for this weight assignment w, we have χf (G) =

w(V (G)) ≤ w(V (G))
αw(G)

, which together with the previous paragraph implies

χf (G) = w(V (G))
αw(G)

.

Corollary 3. If G is vertex transitive, then χf (G) = |V (G)|
α(G)

.

Proof. Considering the weight assignment w such that w(v) = 1 for all v ∈
V (G), Lemma 2 implies χf (G) ≥ |V (G)|

α(G)
. Let k be the number of independent

sets of size α(G) that contain a vertex v of G (since G is vertex transitive,
this number is independent on the choice of v). Let Imax(G) be the set of all
independent sets of G of size α(G). For I ∈ I(G), let xI = 1/k if |I| = α(G)
and xI = 0 otherwise. Clearly the assignment xI satisfies the constraints
from Definition 1, and thus

χf (G) ≤
∑
I∈I(G)

xI =
1

k
|Imax(G)|

=
1

kα(G)

∑
I∈Imax(G)

|I|

=
1

kα(G)
|{(I, v) : I ∈ Imax(G), v ∈ I}|

=
k|V (G)|
kα(G)

=
|V (G)|
α(G)

.

Hence, χf (G) = |V (G)|
α(G)

.
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A set coloring of G is a function ϕ that assigns a set to each vertex of G,
such that ϕ(u) ∩ ϕ(v) = ∅ for all uv ∈ E(G). An (a : b)-coloring of G is a

set coloring ϕ such that |ϕ(v)| ≥ b for all v ∈ V (G) and
∣∣∣⋃v∈V (G) ϕ(v)

∣∣∣ ≤ a.

Lemma 4.

χf (G) = min{a/b : G has an (a : b)-coloring.}

Proof. Let ϕ be an (a : b)-coloring of G, where w.l.o.g. ϕ(v) ⊆ [a] for all
v ∈ V (G). For a color c ∈ [a], let Ic = {v ∈ V (G) : c ∈ ϕ(v)}, and for
I ∈ I(G), let aI be the number of colors c ∈ [a] such that Ic = I. Let
xI = aI/b. Note that for v ∈ V (G), we have∑

I∈I(G),v∈I

xI =
|ϕ(v)|
b
≥ 1,

and that ∑
I∈I(G)

xI =
a

b
,

and thus χf (G) ≤ a/b.
Conversely, consider an optimal solution to the linear program from Def-

inition 1. Since all the coefficients are integers, we can assume that this
solution is rational; hence, there exists a positive integer b such that for all
I ∈ I(G), there exists an integer aI such that xI = aI/b. Let A = {(I, i) :
I ∈ I(G), i ∈ [aI ]}, and for v ∈ V (G), let ϕ(v) = {(I, i) : I ∈ I(G), v ∈
I, i ∈ [aI ]}. Then ϕ is a set coloring of G by subsets of A,

|A| =
∑
I∈I(G)

aI = b
∑
I∈I(G)

xI = bχf (G),

and
|ϕ(v)| =

∑
I∈I(G),v∈I

aI = b
∑

I∈I(G),v∈I

xI ≥ b

for every v ∈ V (G). Hence, ϕ is a (bχf (G) : b)-coloring of G.

A function f : V (G) → V (H) is a homomorphism if f(u)f(v) ∈ E(H)
for every uv ∈ E(G). If there exists a homomorphism from G to H, we write
G → H. The Kneser graph Ka:b is the graph whose vertices are subsets of
[a] of size b and two such sets are adjacent iff they are disjoint.

Observation 5. A graph G is k-colorable iff G → Kk. A graph G has an
(a : b)-coloring iff G→ Ka:b.
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2 Relationship to ordinary chromatic num-

ber

The d-dimensional sphere Sd is the boundary of ball in d+1 dimensions; i.e.,
S0 are two points, S1 is the circle, S2 is the sphere, . . .

Theorem 6 (Borsuk-Ulam). Let A1, . . . , Ad+1 be subsets of the d-dimensional
sphere Sd, each of them open or closed. If A1 ∪ . . . ∪ Ad+1 = Sd, then there
exists i ∈ [d+ 1] and x ∈ Sd such that both x and −x belong to Ai.

Theorem 7. Let a ≥ 2b be integers. The Kneser graph Ka:b has chromatic
number a− 2b+ 2.

Proof. Consider a set S ∈ V (Ka:b). Let ϕ(S) = minS if minS ≤ a− 2b+ 1,
and ϕ(S) = a−2b+2 otherwise. This is a proper coloring: If ϕ(S1) = ϕ(S2),
then either minS1 = minS2 or S1, S2 ⊆ {a − 2b + 2, . . . , a}. In either case,
S1 ∩ S2 6= ∅ (in the latter case, this is because both sets of size b are subsets
of a set of size 2b− 1), and thus S1S2 6∈ E(Ka:b).

Suppose now for a contradiction that ϕ is a proper (a− 2b+ 1)-coloring
of Ka:b. Let d = a− 2b+ 1 and let p1, . . . , pa be points of the d-dimensional
sphere in general position (i.e., no d+1 of them lie on a plane passing through
the center of Sd). For c ∈ [a − 2b + 1], let Ac ⊆ Sd consists of the points p
of the spere such that there exists Sp,c ∈ V (Ka:b) with ϕ(Sp,c) = c and the
points {pi : i ∈ Sp,c} lie in the open half-sphere centered at p. Clearly, the
sets A1, . . . , Aa−2b+1 are open. Let Aa−2b+2 = Sd \

⋃
c∈[a−2b+1]Ac; this set is

closed. By Theorem 6, there exists c ∈ [a− 2b + 2] and a point p ∈ Sd such
that p,−p ∈ Ac.

If c ∈ [a − 2b + 1], this means that there exist vertices Sp,c and S−p,c
of Ka:b both of color c. However, the point sets in Sd that represent them
are disjoint (they are contained in opposite open half-spheres), and thus
Sp,cS−p,c ∈ E(Ka:b), contradicting the assumption that ϕ is proper.

If c = a − 2b + 2, then note that each of the open half-spheres centered
at p and at −p contains at most b− 1 of the points p1, . . . , pa (as otherwise
a b-tuple of them would represent a vertex S of Ka:b and p or −p would
belong to Aϕ(S), contradicting the choice of Aa−2b+2). This means that the
remaining at least a− 2(b− 1) = d+ 1 points lie in the complement of these
two opposite half-spheres. But then they lie on a plane passing through the
center of Sd, contradicting the choice of the points in general position.

Corollary 8. If a ≥ 2b and G has an (a : b)-coloring, then χ(G) ≤ a−2b+2
(and this bound cannot be improved).
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Proof. By Theorem 7 and Observation 5, G→ Ka,b → Ka−2b+2. The bound
cannot be improved by Theorem 7, since G = Ka:b is possible.

Corollary 9. For every positive integer c, there exist graphs with fractional
chromatic number at most 2 + 1/c, but with arbitrarily large chromatic num-
ber.

Proof. The graph K(2c+1)b:bc has fractional chromatic number (2c+1)b
bc

= 2+1/c
and by Theorem 7, its chromatic number is b + 2, which can be arbitrarily
large.

Corollary 10. Let a and b be coprime integers such that a ≥ 2b + 1. Let
a′ > a and b′ > b be integers such that a′/b′ = a/b. Then Ka′,b′ is not
(a : b)-colorable.

Proof. By Theorem 7, Ka:b → Ka−2b+2, while Ka′:b′ 6→ Ka′−2b′+1. Since a
and b are coprime, γ = a′/a = b′/b > 1 is an integer, and thus γ ≥ 2.
Note that (a′ − 2b′ + 1) − (a − 2b + 2) = (γ − 1)(a − 2b) − 1 ≥ 0, and thus
Ka−2b+2 → Ka′−2b′+1. We conclude that Ka′:b′ 6→ Ka:b.

3 Mycielski graphs

Let G be a graph. The Mycielski graph M(G) of G is obtained from G by for
each vertex v ∈ V (G), adding a new vertex cv with the same neighbors, and
then adding a vertex u with neighborhood {cv : v ∈ V (G)}. If G is triangle-
free, then M(G) is also triangle-free. Furthermore, χ(M(G)) = χ(G) + 1.

Theorem 11. Every graph G satisfies χf (M(G)) = χf (G) + 1/χf (G).

Proof. Consider an (a : b)-coloring ϕ of G such that χf (G) = a/b, which
exists by Lemma 4. We will construct an (a2 + b2 : ab)-coloring ψ of M(G),
thus showing that χf (M(G)) ≤ a2+b2

ab
= a/b + b/a = χf (G) + 1/χf (G). Let

C = {1} × [a]2 ∪ {2} × [b]2; the coloring ψ will assign subsets of C of size ab
to vertices of M(G). For every v ∈ V (G), let ψ(v) = {1}×ϕ(v)× [a] and let
ψ(cv) = {1}×ϕ(v)× [a− b]∪{2}× [b]× [b]. Let ψ(u) = {1}× [a]×{a− b+
1, . . . , a}.

Let w : V (G)→ R+
0 be an assignment of weights to vertices ofG such that

w(V (G)) = 1 and αw(G) = 1/χf (G); such an assigment exists by Lemma 2
(scaling the assignment obtained by the lemma so that w(V (G)) = 1 if
necessary). We will construct an assignment of weights z : V (M(G))→ R+

0

such that z(V (M(G))) = χf (G)+1/χf (G) and αz(M(G)) ≤ 1, thus showing

that χf (M(G)) ≥ z(V (M(G)))
αz(M(G))

≥ χf (G) + 1/χf (G). For each v ∈ V (G), let

z(v) = (χf (G) − 1)w(v) and z(cv) = w(v). Let z(u) = 1/χf (G). Consider
now a maximal independent set I of M(G):
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• If u ∈ I, then I \ {u} is a maximal independent set in G and z(I) ≤
(χf (G)− 1)w(I) + 1/χf (G) ≤ 1, since w(I) ≤ αw(I) = 1/χf (G).

• Suppose now that u 6∈ I. Then I = I1 ∪ I2 ∪ I3, where I1 is an
independent set in G, I2 = {cv : v ∈ I1}, and I3 = {cv : v ∈ S},
where S is the set of vertices of G outside of the closed neighborhood
of I1. We have χf (G[S]) ≤ χf (G), and thus by Lemma 4, there exists
an independent set I4 ⊆ S such that w(I4) ≥ w(S)/χf (G). Note that
I1 ∪ I4 is an independent set in G. Hence, we have z(I) = (χf (G) −
1)w(I1)+w(I1)+w(S) ≤ χf (G)(w(I1)+w(I4)) = χf (G)w(I1∪I4) ≤ 1.

Note that if a and b are coprime, then a2 + b2 and ab are coprime. Hence,
if χf (G) = a/b, then χf (M(G)) = a2+b2

ab
is a reduced fraction and its denom-

inator is ab > b2. Hence, by considering iterated Mycielski graphs of C7, we
have the following.

Corollary 12. There exists a sequence of (triangle-free) graphs G0, G1,
. . . such that for i ≥ 0, the graph Gi has 2i+3−1 vertices and the denominator
of χf (Gi) is at least 32i > 3|Gi|/8.

In particular, there are graphs whose optimal set coloring requires expo-
nentially many colors.
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