Fractional coloring

Zdeněk Dvořák

March 24, 2018

1 Introduction and definitions

Note that a graph is k-colorable if and only if it can be covered by at most k independent sets; i.e., we can assign value 0 or 1 to each independent set so that the sum of the assigned values is at most k and each vertex is contained in an independent set having value 1 . This reformulation motivates the following fractional relaxation. Let $\mathcal{I}(G)$ denote the set of all independent sets in G.

Definition 1. The fractional chromatic number $\chi_{f}(G)$ of a graph G is the minimum of

$$
\sum_{I \in \mathcal{I}(G)} x_{I},
$$

over all $x_{I} \geq 0$ for $I \in \mathcal{I}(G)$ such that

$$
\sum_{I \in \mathcal{I}(G), v \in I} x_{I} \geq 1
$$

holds for all $v \in V(G)$.
By LP duality, we have the following alternate formulation.
Observation 1. The fractional chromatic number of a graph G is the maximum of

$$
\sum_{v \in V(G)} y_{v},
$$

over all $y_{v} \geq 0$ for $v \in V(G)$ such that

$$
\sum_{v \in I} y_{v} \leq 1
$$

holds for all $I \in \mathcal{I}(G)$.

Let $w: V(G) \rightarrow \mathbf{R}_{0}^{+}$be an assignment of nonnegative weights to vertices. For $X \subseteq V(G)$, let us define $w(X)=\sum_{v \in X} w(v)$. Let

$$
\alpha_{w}(G)=\max \{w(I): I \in \mathcal{I}(G)\}
$$

Lemma 2.

$$
\chi_{f}(G)=\max \frac{w(V(G))}{\alpha_{w}(G)} \text { over all } w: V(G) \rightarrow \mathbf{R}_{0}^{+}, \text {not identically } 0 .
$$

Proof. Consider any $w: V(G) \rightarrow \mathbf{R}_{0}^{+}$, not identically 0 . Note that $\alpha_{w}(G) \geq$ $\max \{w(v): v \in V(G)\}>0$. Let $y_{v}=\frac{w(v)}{\alpha_{w}(G)}$ for all $w \in V(G)$. This assignment satisfies the constraints of Observation 1, and thus $\chi_{f}(G) \geq$ $\sum_{v \in V(G)} y_{v}=\frac{w(V(G))}{\alpha_{w}(G)}$.

Conversely, let y_{v} be the assignment satisfying the constraints of Observation 1 such that $\sum_{v \in V(G)} y_{v}=\chi_{f}(G)$. Let $w(v)=y_{v}$; the constraints imply $\alpha_{w}(G) \leq 1$, and thus for this weight assignment w, we have $\chi_{f}(G)=$ $w(V(G)) \leq \frac{w(V(G))}{\alpha_{w}(G)}$, which together with the previous paragraph implies $\chi_{f}(G)=\frac{w(V(G))}{\alpha_{w}(G)}$.

Corollary 3. If G is vertex transitive, then $\chi_{f}(G)=\frac{|V(G)|}{\alpha(G)}$.
Proof. Considering the weight assignment w such that $w(v)=1$ for all $v \in$ $V(G)$, Lemma 2 implies $\chi_{f}(G) \geq \frac{|V(G)|}{\alpha(G)}$. Let k be the number of independent sets of size $\alpha(G)$ that contain a vertex v of G (since G is vertex transitive, this number is independent on the choice of v). Let $\mathcal{I}_{\max }(G)$ be the set of all independent sets of G of size $\alpha(G)$. For $I \in \mathcal{I}(G)$, let $x_{I}=1 / k$ if $|I|=\alpha(G)$ and $x_{I}=0$ otherwise. Clearly the assignment x_{I} satisfies the constraints from Definition 1, and thus

$$
\begin{aligned}
\chi_{f}(G) & \leq \sum_{I \in \mathcal{I}(G)} x_{I}=\frac{1}{k}\left|\mathcal{I}_{\max }(G)\right| \\
& =\frac{1}{k \alpha(G)} \sum_{I \in \mathcal{I}_{\max }(G)}|I| \\
& =\frac{1}{k \alpha(G)}\left|\left\{(I, v): I \in \mathcal{I}_{\max }(G), v \in I\right\}\right| \\
& =\frac{k|V(G)|}{k \alpha(G)}=\frac{|V(G)|}{\alpha(G)} .
\end{aligned}
$$

Hence, $\chi_{f}(G)=\frac{|V(G)|}{\alpha(G)}$.

A set coloring of G is a function φ that assigns a set to each vertex of G, such that $\varphi(u) \cap \varphi(v)=\emptyset$ for all $u v \in E(G)$. An $(a: b)$-coloring of G is a set coloring φ such that $|\varphi(v)| \geq b$ for all $v \in V(G)$ and $\left|\bigcup_{v \in V(G)} \varphi(v)\right| \leq a$.

Lemma 4.

$$
\chi_{f}(G)=\min \{a / b: G \text { has an }(a: b) \text {-coloring. }\}
$$

Proof. Let φ be an $(a: b)$-coloring of G, where w.l.o.g. $\varphi(v) \subseteq[a]$ for all $v \in V(G)$. For a color $c \in[a]$, let $I_{c}=\{v \in V(G): c \in \varphi(v)\}$, and for $I \in \mathcal{I}(G)$, let a_{I} be the number of colors $c \in[a]$ such that $I_{c}=I$. Let $x_{I}=a_{I} / b$. Note that for $v \in V(G)$, we have

$$
\sum_{I \in \mathcal{I}(G), v \in I} x_{I}=\frac{|\varphi(v)|}{b} \geq 1,
$$

and that

$$
\sum_{I \in \mathcal{I}(G)} x_{I}=\frac{a}{b},
$$

and thus $\chi_{f}(G) \leq a / b$.
Conversely, consider an optimal solution to the linear program from Definition 1. Since all the coefficients are integers, we can assume that this solution is rational; hence, there exists a positive integer b such that for all $I \in \mathcal{I}(G)$, there exists an integer a_{I} such that $x_{I}=a_{I} / b$. Let $A=\{(I, i)$: $\left.I \in \mathcal{I}(G), i \in\left[a_{I}\right]\right\}$, and for $v \in V(G)$, let $\varphi(v)=\{(I, i): I \in \mathcal{I}(G), v \in$ $\left.I, i \in\left[a_{I}\right]\right\}$. Then φ is a set coloring of G by subsets of A,

$$
|A|=\sum_{I \in \mathcal{I}(G)} a_{I}=b \sum_{I \in \mathcal{I}(G)} x_{I}=b \chi_{f}(G),
$$

and

$$
|\varphi(v)|=\sum_{I \in \mathcal{I}(G), v \in I} a_{I}=b \sum_{I \in \mathcal{I}(G), v \in I} x_{I} \geq b
$$

for every $v \in V(G)$. Hence, φ is a $\left(b \chi_{f}(G): b\right)$-coloring of G.
A function $f: V(G) \rightarrow V(H)$ is a homomorphism if $f(u) f(v) \in E(H)$ for every $u v \in E(G)$. If there exists a homomorphism from G to H, we write $G \rightarrow H$. The Kneser graph $K_{a: b}$ is the graph whose vertices are subsets of $[a]$ of size b and two such sets are adjacent iff they are disjoint.

Observation 5. A graph G is k-colorable iff $G \rightarrow K_{k}$. A graph G has an ($a: b$)-coloring iff $G \rightarrow K_{a: b}$.

2 Relationship to ordinary chromatic number

The d-dimensional sphere S_{d} is the boundary of ball in $d+1$ dimensions; i.e., S_{0} are two points, S_{1} is the circle, S_{2} is the sphere, \ldots

Theorem 6 (Borsuk-Ulam). Let A_{1}, \ldots, A_{d+1} be subsets of the d-dimensional sphere S_{d}, each of them open or closed. If $A_{1} \cup \ldots \cup A_{d+1}=S_{d}$, then there exists $i \in[d+1]$ and $x \in S_{d}$ such that both x and $-x$ belong to A_{i}.

Theorem 7. Let $a \geq 2 b$ be integers. The Kneser graph $K_{a: b}$ has chromatic number $a-2 b+2$.

Proof. Consider a set $S \in V\left(K_{a: b}\right)$. Let $\varphi(S)=\min S$ if $\min S \leq a-2 b+1$, and $\varphi(S)=a-2 b+2$ otherwise. This is a proper coloring: If $\varphi\left(S_{1}\right)=\varphi\left(S_{2}\right)$, then either $\min S_{1}=\min S_{2}$ or $S_{1}, S_{2} \subseteq\{a-2 b+2, \ldots, a\}$. In either case, $S_{1} \cap S_{2} \neq \emptyset$ (in the latter case, this is because both sets of size b are subsets of a set of size $2 b-1$), and thus $S_{1} S_{2} \notin E\left(K_{a: b}\right)$.

Suppose now for a contradiction that φ is a proper $(a-2 b+1)$-coloring of $K_{a: b}$. Let $d=a-2 b+1$ and let p_{1}, \ldots, p_{a} be points of the d-dimensional sphere in general position (i.e., no $d+1$ of them lie on a plane passing through the center of S_{d}). For $c \in[a-2 b+1]$, let $A_{c} \subseteq S_{d}$ consists of the points p of the spere such that there exists $S_{p, c} \in V\left(K_{a: b}\right)$ with $\varphi\left(S_{p, c}\right)=c$ and the points $\left\{p_{i}: i \in S_{p, c}\right\}$ lie in the open half-sphere centered at p. Clearly, the sets $A_{1}, \ldots, A_{a-2 b+1}$ are open. Let $A_{a-2 b+2}=S_{d} \backslash \bigcup_{c \in[a-2 b+1]} A_{c}$; this set is closed. By Theorem 6, there exists $c \in[a-2 b+2]$ and a point $p \in S_{d}$ such that $p,-p \in A_{c}$.

If $c \in[a-2 b+1]$, this means that there exist vertices $S_{p, c}$ and $S_{-p, c}$ of $K_{a: b}$ both of color c. However, the point sets in S_{d} that represent them are disjoint (they are contained in opposite open half-spheres), and thus $S_{p, c} S_{-p, c} \in E\left(K_{a: b}\right)$, contradicting the assumption that φ is proper.

If $c=a-2 b+2$, then note that each of the open half-spheres centered at p and at $-p$ contains at most $b-1$ of the points p_{1}, \ldots, p_{a} (as otherwise a b-tuple of them would represent a vertex S of $K_{a: b}$ and p or $-p$ would belong to $A_{\varphi(S)}$, contradicting the choice of $\left.A_{a-2 b+2}\right)$. This means that the remaining at least $a-2(b-1)=d+1$ points lie in the complement of these two opposite half-spheres. But then they lie on a plane passing through the center of S_{d}, contradicting the choice of the points in general position.

Corollary 8. If $a \geq 2 b$ and G has an ($a: b)$-coloring, then $\chi(G) \leq a-2 b+2$ (and this bound cannot be improved).

Proof. By Theorem 7 and Observation 5, $G \rightarrow K_{a, b} \rightarrow K_{a-2 b+2}$. The bound cannot be improved by Theorem 7, since $G=K_{a: b}$ is possible.
Corollary 9. For every positive integer c, there exist graphs with fractional chromatic number at most $2+1 / c$, but with arbitrarily large chromatic number.
Proof. The graph $K_{(2 c+1) b: b c}$ has fractional chromatic number $\frac{(2 c+1) b}{b c}=2+1 / c$ and by Theorem 7, its chromatic number is $b+2$, which can be arbitrarily large.

Corollary 10. Let a and b be coprime integers such that $a \geq 2 b+1$. Let $a^{\prime}>a$ and $b^{\prime}>b$ be integers such that $a^{\prime} / b^{\prime}=a / b$. Then $K_{a^{\prime}, b^{\prime}}$ is not ($a: b$)-colorable.
Proof. By Theorem 7, $K_{a: b} \rightarrow K_{a-2 b+2}$, while $K_{a^{\prime}: b^{\prime}} \nrightarrow K_{a^{\prime}-2 b^{\prime}+1}$. Since a and b are coprime, $\gamma=a^{\prime} / a=b^{\prime} / b>1$ is an integer, and thus $\gamma \geq 2$. Note that $\left(a^{\prime}-2 b^{\prime}+1\right)-(a-2 b+2)=(\gamma-1)(a-2 b)-1 \geq 0$, and thus $K_{a-2 b+2} \rightarrow K_{a^{\prime}-2 b^{\prime}+1}$. We conclude that $K_{a^{\prime}: b^{\prime}} \nrightarrow K_{a: b}$.

3 Mycielski graphs

Let G be a graph. The Mycielski graph $M(G)$ of G is obtained from G by for each vertex $v \in V(G)$, adding a new vertex c_{v} with the same neighbors, and then adding a vertex u with neighborhood $\left\{c_{v}: v \in V(G)\right\}$. If G is trianglefree, then $M(G)$ is also triangle-free. Furthermore, $\chi(M(G))=\chi(G)+1$.
Theorem 11. Every graph G satisfies $\chi_{f}(M(G))=\chi_{f}(G)+1 / \chi_{f}(G)$.
Proof. Consider an $(a: b)$-coloring φ of G such that $\chi_{f}(G)=a / b$, which exists by Lemma 4. We will construct an $\left(a^{2}+b^{2}: a b\right)$-coloring ψ of $M(G)$, thus showing that $\chi_{f}(M(G)) \leq \frac{a^{2}+b^{2}}{a b}=a / b+b / a=\chi_{f}(G)+1 / \chi_{f}(G)$. Let $C=\{1\} \times[a]^{2} \cup\{2\} \times[b]^{2}$; the coloring ψ will assign subsets of C of size $a b$ to vertices of $M(G)$. For every $v \in V(G)$, let $\psi(v)=\{1\} \times \varphi(v) \times[a]$ and let $\psi\left(c_{v}\right)=\{1\} \times \varphi(v) \times[a-b] \cup\{2\} \times[b] \times[b]$. Let $\psi(u)=\{1\} \times[a] \times\{a-b+$ $1, \ldots, a\}$.

Let $w: V(G) \rightarrow \mathbf{R}_{0}^{+}$be an assignment of weights to vertices of G such that $w(V(G))=1$ and $\alpha_{w}(G)=1 / \chi_{f}(G)$; such an assigment exists by Lemma 2 (scaling the assignment obtained by the lemma so that $w(V(G))=1$ if necessary). We will construct an assignment of weights $z: V(M(G)) \rightarrow \mathbf{R}_{0}^{+}$ such that $z(V(M(G)))=\chi_{f}(G)+1 / \chi_{f}(G)$ and $\alpha_{z}(M(G)) \leq 1$, thus showing that $\chi_{f}(M(G)) \geq \frac{z(V(M(G)))}{\alpha_{z}(M(G))} \geq \chi_{f}(G)+1 / \chi_{f}(G)$. For each $v \in V(G)$, let $z(v)=\left(\chi_{f}(G)-1\right) w(v)$ and $z\left(c_{v}\right)=w(v)$. Let $z(u)=1 / \chi_{f}(G)$. Consider now a maximal independent set I of $M(G)$:

- If $u \in I$, then $I \backslash\{u\}$ is a maximal independent set in G and $z(I) \leq$ $\left(\chi_{f}(G)-1\right) w(I)+1 / \chi_{f}(G) \leq 1$, since $w(I) \leq \alpha_{w}(I)=1 / \chi_{f}(G)$.
- Suppose now that $u \notin I$. Then $I=I_{1} \cup I_{2} \cup I_{3}$, where I_{1} is an independent set in $G, I_{2}=\left\{c_{v}: v \in I_{1}\right\}$, and $I_{3}=\left\{c_{v}: v \in S\right\}$, where S is the set of vertices of G outside of the closed neighborhood of I_{1}. We have $\chi_{f}(G[S]) \leq \chi_{f}(G)$, and thus by Lemma 4, there exists an independent set $I_{4} \subseteq S$ such that $w\left(I_{4}\right) \geq w(S) / \chi_{f}(G)$. Note that $I_{1} \cup I_{4}$ is an independent set in G. Hence, we have $z(I)=\left(\chi_{f}(G)-\right.$ 1) $w\left(I_{1}\right)+w\left(I_{1}\right)+w(S) \leq \chi_{f}(G)\left(w\left(I_{1}\right)+w\left(I_{4}\right)\right)=\chi_{f}(G) w\left(I_{1} \cup I_{4}\right) \leq 1$.

Note that if a and b are coprime, then $a^{2}+b^{2}$ and $a b$ are coprime. Hence, if $\chi_{f}(G)=a / b$, then $\chi_{f}(M(G))=\frac{a^{2}+b^{2}}{a b}$ is a reduced fraction and its denominator is $a b>b^{2}$. Hence, by considering iterated Mycielski graphs of C_{7}, we have the following.

Corollary 12. There exists a sequence of (triangle-free) graphs G_{0}, G_{1}, \ldots such that for $i \geq 0$, the graph G_{i} has $2^{i+3}-1$ vertices and the denominator of $\chi_{f}\left(G_{i}\right)$ is at least $3^{2^{i}}>3^{\left|G_{i}\right| / 8}$.

In particular, there are graphs whose optimal set coloring requires exponentially many colors.

