Nowhere-zero flows

Zdeněk Dvořák

March 24, 2018

1 Introduction

Let A be a finite Abelian group. A function to A is nowhere-zero if its range is a subset of $A \backslash\{0\}$.

Definition 1. An A-flow in a graph G is a function f assigning to directed edges of G elements of A such that $f(u v)=-f(v u)$ for all $u v \in E(G)$ and for every $v \in V(G)$, we have

$$
\sum_{u v \in E(G)} f(u v)=0 .
$$

For $S \subseteq V(G)$, let $f(S)=\sum_{u \in S, v \in V(G) \backslash S} f(u v)$.
Observation 1. If f is an A-flow, then $f(S)=0$ for all $S \subseteq V(G)$.
Proof. We have

$$
f(S)=\sum_{u \in S, u v \in E(G)} f(u v)=0 .
$$

Corollary 2. If G has a nowhere-zero A-flow, then G is bridgeless.
For a walk $W=v_{1} v_{2} \ldots v_{k}$ and a function t from directed edges to A, let

$$
t(W)=\sum_{i=1}^{k-1} t\left(v_{i} v_{i+1}\right)
$$

Definition 2. An A-tension in a graph G is a function t assigning to directed edges of G elements of A such that $t(u v)=-t(v u)$ for all $u v \in E(G)$ and $t(C)=0$ for every cycle $C \subseteq G$.

Lemma 3. If t is an A-tension in a graph G and W is a closed walk, then $t(W)=0$.

Proof. Let H be the directed graph whose edges are exactly the edges of W directed along this closed walk, taken with multiplicities. The graph H is Eulerian, and thus it can be expressed as union of edge-disjoint directed cycles C_{1}, \ldots, C_{k}. Then $t(W)=t\left(C_{1}\right)+\ldots+t\left(C_{k}\right)=0$.

Lemma 4. Let G be a connected graph. For a proper coloring φ of G by elements of A, let t_{φ} be defined by $t_{\varphi}(u v)=\varphi(v)-\varphi(u)$ for each $u v \in E(G)$. Then t_{φ} is a nowhere-zero A-tension. Conversely, if t is a nowhere-zero A tension, then there exist exactly $|A|$ proper colorings ψ of G by elements of A such that $t=t_{\psi}$.

Proof. For any closed walk $W=v_{1} \ldots v_{k}$ (with $v_{k}=v_{1}$), we have

$$
t_{\varphi}(W)=\sum_{i=1}^{k-1}\left(\varphi\left(v_{i+1}\right)-\varphi\left(v_{i}\right)\right)=0
$$

since the contributions of the consecutive terms cancel out. Hence, t_{φ} is an A-tension, and it is nowhere-zero since φ is proper.

Conversely, fix any vertex $v_{0} \in V(G)$, and for each $v \in V(G)$, let W_{v} denote any walk from v_{0} to v in G. Let a be any element of A, and define $\psi_{a}(v)=a+t\left(W_{v}\right)$. For any edge $u v \in E(G)$, consider the closed walk consisting of W_{v}, the edge $v u$, and the reversal of W_{u}; we have

$$
\psi_{a}(v)-\psi_{a}(u)=t\left(W_{v}\right)-t\left(W_{u}\right)=t(W)-t(v u)=t(u v)
$$

and thus ψ_{a} is a proper coloring of G by elements of A such that $t=t_{\psi_{a}}$. Furthermore, if ψ is a proper coloring of G by elements of A and $t=t_{\psi}$, it is easy to see that $\psi=\psi_{a}$ for $a=\psi\left(v_{0}\right)$.

Definition 3. Let G be a plane graph, let uv be an edge of G, and let $g h$ be the corresponding edge of the dual G^{\star} of G, such that in the drawing of G, g is drawn to the left of $u v$ (when looking from u in the direction of this edge). For any function f assigning values to directed edges of G, let us define $f^{\star}(g h)=f(u v)$.

Lemma 5. Let G be a connected plane graph. A function t assigning elements of A to directed edges of G is an A-tension iff t^{\star} is an A-flow in G^{\star}.

Proof. Consider any vertex g of G^{\star}. The incident edges of G^{\star} correspond to the facial walk W_{g} of the face g of G, and thus if t is an A-tension, then $t^{\star}(\{g\})=t\left(W_{g}\right)=0$ by Lemma 3, and thus t^{\star} is an A-flow.

Consider any cycle C in G, and let S be the set of faces G drawn inside C. If t^{\star} is an A-flow, then $t(C)=t^{\star}(S)=0$ by Observation 1 , and thus t is an A-tension.

Corollary 6. The number of proper A-colorings of a connected plane graph G is equal to $|A|$ times the number of nowhere-zero A-flows in G^{\star}.

Lemma 7. Let G be a plane triangulation with no loops, and let G^{\star} be its dual (a plane 3 -regular bridgeless graph). Then G is 4 -colorable iff G^{\star} is 3 -edge-colorable.

Proof. The graph G is 4 -colorable iff it has a proper coloring by elements of Z_{2}^{2}. By Corollary 6 , this is the case iff G^{\star} has a nowhere-zero Z_{2}^{2}-flow. However, a nowhere-zero function $f: E\left(G^{\star}\right) \rightarrow Z_{2}^{2}$ is a Z_{2}^{2}-flow iff for each $g \in V\left(G^{\star}\right)$, the three edges incident with g have different values, i.e., iff G^{\star} has a proper edge coloring by the non-zero elements of Z_{2}^{2}.

Corollary 8. The following claims are equivalent:

- Every planar graph is 4-colorable.
- Every planar 3-regular bridgeless graph is 3-edge-colorable.

2 Basic properties of nowhere-zero flows

Let $\chi^{\star}(G, A)$ denote the number of nowhere-zero A-flows of G.
Lemma 9. Let e be an edge of G. If e is a loop, then $\chi^{\star}(G, A)=(|A|-$ 1) $\chi^{\star}(G-e, A)$. If e is not a loop, then $\chi^{\star}(G, A)=\chi^{\star}(G / e, A)-\chi^{\star}(G-e, A)$.

Proof. If e is a loop, then a nowhere-zero A-flow in $G-e$ extends to a nowhere-zero A-flow in G by setting its value on e to an arbitrary non-zero element of A, and conversely the restriction of a nowhere-zero A-flow in G to $E(G) \backslash\{e\}$ is a nowhere-zero A-flow in $G-e$, justifying the first claim.

If e is not a loop, then note that any A-flow f^{\prime} in G / e extends to an A-flow f in G in unique way by setting the value on e so that the flow conservation law holds on both ends of e; and conversely, restriction of an A-flow in G to $E(G) \backslash\{e\}$ is an A-flow in G / e. Furthermore, if f^{\prime} is nowhere-zero, then f is nowhere-zero everywhere except possibly on e. Finally, note that the A-flows in G whose value is 0 exactly on e are in 1-to-1 correspondence with nowherezero flows in $G-e$. Consequently, $\chi^{\star}(G, A)=\chi^{\star}(G / e, A)-\chi^{\star}(G-e, A)$.

From this, we get the following by induction on the number of edges (and noting that an edgeless graph has exactly one nowhere-zero A-flow).

Corollary 10. If A_{1} and A_{2} are finite Abelian groups of the same size, then $\chi^{\star}\left(G, A_{1}\right)=\chi^{\star}\left(G, A_{2}\right)$ for every graph G. In particular, a graph has a nowhere-zero A_{1}-flow iff it has a nowhere-zero A_{2}-flow.

Hence, we will say that G has a nowhere-zero k-flow if it has a nowherezero A-flow for some Abelian group of size k.

Corollary 11. Let G be a graph and $\left\{e_{1}, e_{2}\right\}$ be an edge-cut in G. Then $\chi^{\star}(G, A)=\chi^{\star}\left(G / e_{1}, A\right)$.

Proof. By Lemma 9, we have $\chi^{\star}(G, A)=\chi^{\star}\left(G / e_{1}, A\right)-\chi^{\star}\left(G-e_{1}, A\right)$. However, $G-e_{1}$ has a bridge e_{2}, and thus $\chi^{\star}\left(G-e_{1}, A\right)=0$.

Let f be an A-flow, a an element of A, and C a directed cycle. Let $f+a C$ denote the flow obtained from f by increasing the value on edges of C by a, i.e., $(f+a C)(u v)=f(u v)$ if $u v \notin E(C),(f+a C)(u v)=f(u v)+a$ if $u v \in E(C)$, and $(f+a C)(u v)=f(u v)-a$ if $v u \in E(C)$.

Lemma 12. If T is a spanning tree of a connected graph G, then G has an A-flow which is zero only on a subset of edges of T.

Proof. For every $e \in E(G) \backslash E(T)$, let C_{e} be directed cycle consisting of e and the path in T joining the ends of e. Let a be a non-zero element of A. Then $\sum_{e \in E(G) \backslash E(T)} e C_{e}$ is an A-flow in G and $f(e)=a \neq 0$ for every $e \in E(G) \backslash E(T)$.

3 Existence of nowhere-zero flows

Since the Petersen graph is 3 -regular and not 3 -edge-colorable, it has no Z_{2}^{2-} flow. Tutte gave the following conjectures (the second one implies the Four Color Theorem, the third one implies Grötzsch' theorem).

Conjecture 1. 5-flow conjecture Every bridgeless graph has a nowherezero 5-flow.

4-flow conjecture Every bridgeless graph not containing the Petersen graph as a minor has a nowhere-zero 4-flow.

3-flow conjecture Every 4-edge-connected graph has a nowhere-zero 3-flow.
We use the following well-known result.

Theorem 13 (Nash-Williams). For any integer k, an $2 k$-edge-connected graph has k pairwise edge-disjoint spanning trees.

Theorem 14. Every 4-edge-connected graph has a nowhere-zero 4-flow.
Proof. A 4-edge-connected graph G has two edge-disjoint spanning trees T_{1} and T_{2}. For $i=1,2$, let f_{i} be a Z_{2}-flow in G which is zero only on a subset of $E\left(T_{i}\right)$. Then $f(u v)=\left(f_{1}(u v), f_{2}(u v)\right)$ is a nowhere-zero Z_{2}^{2}-flow in G.

Theorem 15. Every bridgeless graph has a nowhere-zero 8-flow.
Proof. By Corollary 11, it suffices to prove this is the case for a 3-edgeconnected graph G. Let G^{\prime} be obtained from G by doubling each edge; then G^{\prime} is 6-edge-connected, and thus it has three pairwise edge-disjoint spanning trees T_{1}, T_{2}, and T_{3}. Each edge of G is contained in at most two of these spanning trees. For $i=1,2,3$, let f_{i} be a Z_{2}-flow in G which is zero only on a subset of $E\left(T_{i}\right)$. Then $f(u v)=\left(f_{1}(u v), f_{2}(u v), f_{3}(u v)\right)$ is a nowhere-zero Z_{2}^{3}-flow in G.

Lemma 16. Let G be a 3-connected graph. Then there exists a partition V_{1}, \ldots, V_{k} of vertices of G such that for $i=1, \ldots, k$,

- either $\left|V_{i}\right|=1$ or $G\left[V_{i}\right]$ has a Hamiltonian cycle, and
- if $i \geq 2$, then there exist at least two edges with one end in V_{i} and the other end in $V_{1} \cup \ldots \cup V_{i-1}$.

Proof. Choose V_{1} consisting of an arbitrary vertex of G. For $i \geq 2$, let B be a leaf 2 -connected block of $G_{i}=G-\left(V_{1} \cup \ldots \cup V_{i-1}\right)$. Since G is 3 -connected and at most one vertex separates B from the rest of G_{i}, there exist at least two edges e_{1} and e_{2} from B to $V_{1} \cup \ldots \cup V_{i-1}$. If e_{1} and e_{2} are incident with the same vertex v of B, we set $V_{i}=\{v\}$. Otherwise, since B is 2-connected, there exists a cycle C in B containing the endpoints of these two edges, and we set $V_{i}=V(C)$.

Theorem 17. Every bridgeless graph has a nowhere-zero 6-flow.
Proof. By Corollary 11, we can assume that G is 3 -edge-connected. Furthermore, we can assume that G has maximum degree at most three (a vertex v with neighbors v_{1}, \ldots, v_{k} can be replaced by a cycle $w_{1} w_{2} \ldots w_{k}$ and edges $w_{i} v_{i}$ for $1 \leq i \leq k$, and a flow in the resulting graph can be transformed into a flow in G by contracting the cycle back into a single vertex). Hence, G is 3 -connected. Let V_{1}, \ldots, V_{k} be a partition of the vertex set of G as in Lemma 16. For $m=1, \ldots, k$, let Q_{m} be the union of Hamiltonian cycles of
graphs $G\left[V_{i}\right]$ such that $1 \leq i \leq m$ and $\left|V_{i}\right|>1$. For $m=2, \ldots, k$, let H_{m} be the subgraph of G with vertex set $V_{1} \cup \ldots \cup V_{m}$ that for $2 \leq i \leq m$ contains exactly two edges with one end in V_{i} and the other end in $V_{1} \cup \ldots \cup V_{i-1}$. Observe that $H_{m} \cup Q_{m}$ is connected and there exists a cycle $C_{m} \subseteq H_{m} \cup Q_{m}$ containing both edges from V_{m} to $V_{1} \cup \ldots \cup V_{m-1}$. Let f_{0} be a Z_{2}-flow in G whose value is 1 on edges of Q_{k} and zero everywhere else.

Let T be a spanning tree of $Q_{k} \cup H_{k}$; note that T is also a spanning tree of G. Let f_{k} be a Z_{3}-flow in obtained by Lemma 12, whose values are zero only on a subset of edges of $H_{k} \cup Q_{k}$. We now define Z_{3}-flows f_{k-1}, \ldots, f_{1}, such that f_{i} can only have value zero on edges of $H_{i} \cup Q_{k}$. Assuming f_{i+1} was already constructed, we consider the three flows $f_{i+1}, f_{i+1}+C_{i}, f_{i+1}+2 C_{i}$. Note that one of these three flows is non-zero on both edges of H_{i+1} between V_{i+1} and $V_{1} \cup \ldots \cup V_{i}$; we select this flow as f_{i}. Since all the edges whose values differ in f_{i+1} and f_{i} belong to $H_{i+1} \cup Q_{k}$, we conclude inductively that f_{i} can only have zeros on dges of $H_{i} \cup Q_{k}$.

Consequently, the Z_{3}-flow f_{1} has only zeros on the edges of Q_{k}, and thus $\left(f_{0}, f_{1}\right)$ is a nowhere-zero $\left(Z_{2} \times Z_{3}\right)$-flow in G.

4 3-colorings of quadrangulations

