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1 Introduction

Let A be a finite Abelian group. A function to A is nowhere-zero if its range
is a subset of A \ {0}.

Definition 1. An A-flow in a graph G is a function f assigning to directed
edges of G elements of A such that f(uv) = −f(vu) for all uv ∈ E(G) and
for every v ∈ V (G), we have ∑

uv∈E(G)

f(uv) = 0.

For S ⊆ V (G), let f(S) =
∑

u∈S,v∈V (G)\S f(uv).

Observation 1. If f is an A-flow, then f(S) = 0 for all S ⊆ V (G).

Proof. We have

f(S) =
∑

u∈S,uv∈E(G)

f(uv) = 0.

Corollary 2. If G has a nowhere-zero A-flow, then G is bridgeless.

For a walk W = v1v2 . . . vk and a function t from directed edges to A, let

t(W ) =
k−1∑
i=1

t(vivi+1).

Definition 2. An A-tension in a graph G is a function t assigning to directed
edges of G elements of A such that t(uv) = −t(vu) for all uv ∈ E(G) and
t(C) = 0 for every cycle C ⊆ G.
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Lemma 3. If t is an A-tension in a graph G and W is a closed walk, then
t(W ) = 0.

Proof. Let H be the directed graph whose edges are exactly the edges of
W directed along this closed walk, taken with multiplicities. The graph H
is Eulerian, and thus it can be expressed as union of edge-disjoint directed
cycles C1, . . . , Ck. Then t(W ) = t(C1) + . . .+ t(Ck) = 0.

Lemma 4. Let G be a connected graph. For a proper coloring ϕ of G by
elements of A, let tϕ be defined by tϕ(uv) = ϕ(v)−ϕ(u) for each uv ∈ E(G).
Then tϕ is a nowhere-zero A-tension. Conversely, if t is a nowhere-zero A-
tension, then there exist exactly |A| proper colorings ψ of G by elements of
A such that t = tψ.

Proof. For any closed walk W = v1 . . . vk (with vk = v1), we have

tϕ(W ) =
k−1∑
i=1

(ϕ(vi+1)− ϕ(vi)) = 0,

since the contributions of the consecutive terms cancel out. Hence, tϕ is an
A-tension, and it is nowhere-zero since ϕ is proper.

Conversely, fix any vertex v0 ∈ V (G), and for each v ∈ V (G), let Wv

denote any walk from v0 to v in G. Let a be any element of A, and define
ψa(v) = a + t(Wv). For any edge uv ∈ E(G), consider the closed walk
consisting of Wv, the edge vu, and the reversal of Wu; we have

ψa(v)− ψa(u) = t(Wv)− t(Wu) = t(W )− t(vu) = t(uv),

and thus ψa is a proper coloring of G by elements of A such that t = tψa .
Furthermore, if ψ is a proper coloring of G by elements of A and t = tψ, it is
easy to see that ψ = ψa for a = ψ(v0).

Definition 3. Let G be a plane graph, let uv be an edge of G, and let gh
be the corresponding edge of the dual G? of G, such that in the drawing of
G, g is drawn to the left of uv (when looking from u in the direction of this
edge). For any function f assigning values to directed edges of G, let us
define f ?(gh) = f(uv).

Lemma 5. Let G be a connected plane graph. A function t assigning el-
ements of A to directed edges of G is an A-tension iff t? is an A-flow in
G?.
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Proof. Consider any vertex g of G?. The incident edges of G? correspond
to the facial walk Wg of the face g of G, and thus if t is an A-tension, then
t?({g}) = t(Wg) = 0 by Lemma 3, and thus t? is an A-flow.

Consider any cycle C in G, and let S be the set of faces G drawn inside
C. If t? is an A-flow, then t(C) = t?(S) = 0 by Observation 1, and thus t is
an A-tension.

Corollary 6. The number of proper A-colorings of a connected plane graph
G is equal to |A| times the number of nowhere-zero A-flows in G?.

Lemma 7. Let G be a plane triangulation with no loops, and let G? be its
dual (a plane 3-regular bridgeless graph). Then G is 4-colorable iff G? is
3-edge-colorable.

Proof. The graph G is 4-colorable iff it has a proper coloring by elements
of Z2

2 . By Corollary 6, this is the case iff G? has a nowhere-zero Z2
2 -flow.

However, a nowhere-zero function f : E(G?) → Z2
2 is a Z2

2 -flow iff for each
g ∈ V (G?), the three edges incident with g have different values, i.e., iff G?

has a proper edge coloring by the non-zero elements of Z2
2 .

Corollary 8. The following claims are equivalent:

• Every planar graph is 4-colorable.

• Every planar 3-regular bridgeless graph is 3-edge-colorable.

2 Basic properties of nowhere-zero flows

Let χ?(G,A) denote the number of nowhere-zero A-flows of G.

Lemma 9. Let e be an edge of G. If e is a loop, then χ?(G,A) = (|A| −
1)χ?(G−e, A). If e is not a loop, then χ?(G,A) = χ?(G/e,A)−χ?(G−e, A).

Proof. If e is a loop, then a nowhere-zero A-flow in G − e extends to a
nowhere-zero A-flow in G by setting its value on e to an arbitrary non-zero
element of A, and conversely the restriction of a nowhere-zero A-flow in G
to E(G) \ {e} is a nowhere-zero A-flow in G− e, justifying the first claim.

If e is not a loop, then note that any A-flow f ′ in G/e extends to an A-flow
f in G in unique way by setting the value on e so that the flow conservation
law holds on both ends of e; and conversely, restriction of an A-flow in G to
E(G) \ {e} is an A-flow in G/e. Furthermore, if f ′ is nowhere-zero, then f is
nowhere-zero everywhere except possibly on e. Finally, note that the A-flows
in G whose value is 0 exactly on e are in 1-to-1 correspondence with nowhere-
zero flows in G−e. Consequently, χ?(G,A) = χ?(G/e,A)−χ?(G−e, A).
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From this, we get the following by induction on the number of edges (and
noting that an edgeless graph has exactly one nowhere-zero A-flow).

Corollary 10. If A1 and A2 are finite Abelian groups of the same size,
then χ?(G,A1) = χ?(G,A2) for every graph G. In particular, a graph has a
nowhere-zero A1-flow iff it has a nowhere-zero A2-flow.

Hence, we will say that G has a nowhere-zero k-flow if it has a nowhere-
zero A-flow for some Abelian group of size k.

Corollary 11. Let G be a graph and {e1, e2} be an edge-cut in G. Then
χ?(G,A) = χ?(G/e1, A).

Proof. By Lemma 9, we have χ?(G,A) = χ?(G/e1, A)−χ?(G− e1, A). How-
ever, G− e1 has a bridge e2, and thus χ?(G− e1, A) = 0.

Let f be an A-flow, a an element of A, and C a directed cycle. Let f+aC
denote the flow obtained from f by increasing the value on edges of C by
a, i.e., (f + aC)(uv) = f(uv) if uv 6∈ E(C), (f + aC)(uv) = f(uv) + a if
uv ∈ E(C), and (f + aC)(uv) = f(uv)− a if vu ∈ E(C).

Lemma 12. If T is a spanning tree of a connected graph G, then G has an
A-flow which is zero only on a subset of edges of T .

Proof. For every e ∈ E(G) \ E(T ), let Ce be directed cycle consisting of e
and the path in T joining the ends of e. Let a be a non-zero element of
A. Then

∑
e∈E(G)\E(T ) eCe is an A-flow in G and f(e) = a 6= 0 for every

e ∈ E(G) \ E(T ).

3 Existence of nowhere-zero flows

Since the Petersen graph is 3-regular and not 3-edge-colorable, it has no Z2
2 -

flow. Tutte gave the following conjectures (the second one implies the Four
Color Theorem, the third one implies Grötzsch’ theorem).

Conjecture 1. 5-flow conjecture Every bridgeless graph has a nowhere-
zero 5-flow.

4-flow conjecture Every bridgeless graph not containing the Petersen graph
as a minor has a nowhere-zero 4-flow.

3-flow conjecture Every 4-edge-connected graph has a nowhere-zero 3-flow.

We use the following well-known result.
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Theorem 13 (Nash-Williams). For any integer k, an 2k-edge-connected
graph has k pairwise edge-disjoint spanning trees.

Theorem 14. Every 4-edge-connected graph has a nowhere-zero 4-flow.

Proof. A 4-edge-connected graph G has two edge-disjoint spanning trees T1
and T2. For i = 1, 2, let fi be a Z2-flow in G which is zero only on a subset
of E(Ti). Then f(uv) = (f1(uv), f2(uv)) is a nowhere-zero Z2

2 -flow in G.

Theorem 15. Every bridgeless graph has a nowhere-zero 8-flow.

Proof. By Corollary 11, it suffices to prove this is the case for a 3-edge-
connected graph G. Let G′ be obtained from G by doubling each edge; then
G′ is 6-edge-connected, and thus it has three pairwise edge-disjoint spanning
trees T1, T2, and T3. Each edge of G is contained in at most two of these
spanning trees. For i = 1, 2, 3, let fi be a Z2-flow in G which is zero only on
a subset of E(Ti). Then f(uv) = (f1(uv), f2(uv), f3(uv)) is a nowhere-zero
Z3

2 -flow in G.

Lemma 16. Let G be a 3-connected graph. Then there exists a partition V1,
. . . , Vk of vertices of G such that for i = 1, . . . , k,

• either |Vi| = 1 or G[Vi] has a Hamiltonian cycle, and

• if i ≥ 2, then there exist at least two edges with one end in Vi and the
other end in V1 ∪ . . . ∪ Vi−1.

Proof. Choose V1 consisting of an arbitrary vertex of G. For i ≥ 2, let B be
a leaf 2-connected block of Gi = G− (V1∪ . . .∪Vi−1). Since G is 3-connected
and at most one vertex separates B from the rest of Gi, there exist at least
two edges e1 and e2 from B to V1 ∪ . . . ∪ Vi−1. If e1 and e2 are incident with
the same vertex v of B, we set Vi = {v}. Otherwise, since B is 2-connected,
there exists a cycle C in B containing the endpoints of these two edges, and
we set Vi = V (C).

Theorem 17. Every bridgeless graph has a nowhere-zero 6-flow.

Proof. By Corollary 11, we can assume that G is 3-edge-connected. Further-
more, we can assume that G has maximum degree at most three (a vertex v
with neighbors v1, . . . , vk can be replaced by a cycle w1w2 . . . wk and edges
wivi for 1 ≤ i ≤ k, and a flow in the resulting graph can be transformed
into a flow in G by contracting the cycle back into a single vertex). Hence,
G is 3-connected. Let V1, . . . , Vk be a partition of the vertex set of G as in
Lemma 16. For m = 1, . . . , k, let Qm be the union of Hamiltonian cycles of

5



graphs G[Vi] such that 1 ≤ i ≤ m and |Vi| > 1. For m = 2, . . . , k, let Hm be
the subgraph of G with vertex set V1 ∪ . . . ∪ Vm that for 2 ≤ i ≤ m contains
exactly two edges with one end in Vi and the other end in V1 ∪ . . . ∪ Vi−1.
Observe that Hm ∪Qm is connected and there exists a cycle Cm ⊆ Hm ∪Qm

containing both edges from Vm to V1 ∪ . . . ∪ Vm−1. Let f0 be a Z2-flow in G
whose value is 1 on edges of Qk and zero everywhere else.

Let T be a spanning tree of Qk ∪Hk; note that T is also a spanning tree
of G. Let fk be a Z3-flow in obtained by Lemma 12, whose values are zero
only on a subset of edges of Hk ∪Qk. We now define Z3-flows fk−1, . . . , f1,
such that fi can only have value zero on edges of Hi∪Qk. Assuming fi+1 was
already constructed, we consider the three flows fi+1, fi+1 + Ci, fi+1 + 2Ci.
Note that one of these three flows is non-zero on both edges of Hi+1 between
Vi+1 and V1 ∪ . . . ∪ Vi; we select this flow as fi. Since all the edges whose
values differ in fi+1 and fi belong to Hi+1∪Qk, we conclude inductively that
fi can only have zeros on dges of Hi ∪Qk.

Consequently, the Z3-flow f1 has only zeros on the edges of Qk, and thus
(f0, f1) is a nowhere-zero (Z2 × Z3)-flow in G.

4 3-colorings of quadrangulations

...
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