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1 Introduction

Let A be a finite Abelian group. A function to A is nowhere-zero if its range
is a subset of A\ {0}.

Definition 1. An A-flow in a graph G is a function f assigning to directed
edges of G elements of A such that f(uv) = —f(vu) for all wv € E(G) and
for every v € V(G), we have

Z fluv) =0.

weE(G)

For S C V(G), let f(S) =2 ,csvevions f(uv).
Observation 1. If f is an A-flow, then f(S) =0 for all S C V(G).

Proof. We have
)= > fluw)=0.
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Corollary 2. If G has a nowhere-zero A-flow, then G is bridgeless.

For a walk W = vjvy ... v, and a function ¢ from directed edges to A, let

t(W) == t(vivi—l—l)-

=1

Definition 2. An A-tension in a graph G is a function t assigning to directed
edges of G elements of A such that t(uv) = —t(vu) for all wv € E(G) and
t(C) =0 for every cycle C C G.



Lemma 3. Ift is an A-tension in a graph G and W is a closed walk, then
t(W) = 0.

Proof. Let H be the directed graph whose edges are exactly the edges of
W directed along this closed walk, taken with multiplicities. The graph H
is Eulerian, and thus it can be expressed as union of edge-disjoint directed
cycles Cy, ..., Cg. Then t(W) =t(Cy) + ...+ t(Cy) = 0. O

Lemma 4. Let G be a connected graph. For a proper coloring ¢ of G by
elements of A, let t, be defined by t,(uv) = p(v) —@(u) for each uwv € E(G).
Then t, is a nowhere-zero A-tension. Conversely, if t is a nowhere-zero A-
tension, then there exist exactly |A| proper colorings ¥ of G by elements of
A such that t =t,.

Proof. For any closed walk W = v; ... vy (with vy = v1), we have

o

-1

to(W) = > (p(vig1) — p(vi)) =0,

1

1

since the contributions of the consecutive terms cancel out. Hence, t, is an
A-tension, and it is nowhere-zero since ¢ is proper.

Conversely, fix any vertex vy € V(G), and for each v € V(G), let W,
denote any walk from vy to v in G. Let a be any element of A, and define
Yo (v) = a+ t(W,). For any edge uv € E(G), consider the closed walk
consisting of W, the edge vu, and the reversal of W,,; we have

¢a(v) - 77Z)a(u) = t(W’U) - t(Wu) = t(W) - t(vu) = t(uv)a

and thus v, is a proper coloring of G' by elements of A such that ¢ = t,,.
Furthermore, if v is a proper coloring of G by elements of A and ¢ = t,, it is
easy to see that ¢ = 1, for a = 1 (vy). ]

Definition 3. Let G be a plane graph, let uv be an edge of G, and let gh
be the corresponding edge of the dual G* of G, such that in the drawing of
G, g is drawn to the left of uv (when looking from w in the direction of this
edge). For any function [ assigning values to directed edges of G, let us

define f*(gh) = f(uv).

Lemma 5. Let G be a connected plane graph. A function t assigning el-
ements of A to directed edges of G is an A-tension iff t* is an A-flow in
G*.



Proof. Consider any vertex g of G*. The incident edges of G* correspond
to the facial walk W, of the face g of G, and thus if ¢ is an A-tension, then
t*({g}) = t(W,) = 0 by Lemma 3, and thus ¢* is an A-flow.

Consider any cycle C' in GG, and let S be the set of faces G drawn inside
C. If t* is an A-flow, then ¢(C) = t*(S) = 0 by Observation 1, and thus ¢ is
an A-tension. m

Corollary 6. The number of proper A-colorings of a connected plane graph
G is equal to |A| times the number of nowhere-zero A-flows in G*.

Lemma 7. Let G be a plane triangulation with no loops, and let G* be its
dual (a plane 3-regular bridgeless graph). Then G is 4-colorable iff G* is
3-edge-colorable.

Proof. The graph G is 4-colorable iff it has a proper coloring by elements
of Z3. By Corollary 6, this is the case iff G* has a nowhere-zero Z3-flow.
However, a nowhere-zero function f : E(G*) — Z2 is a Z2-flow iff for each
g € V(G*), the three edges incident with g have different values, i.e., iff G*
has a proper edge coloring by the non-zero elements of Z3. O]

Corollary 8. The following claims are equivalent:
e Fvery planar graph is 4-colorable.

o Fuvery planar 3-regular bridgeless graph is 3-edge-colorable.

2 Basic properties of nowhere-zero flows

Let x*(G, A) denote the number of nowhere-zero A-flows of G.

Lemma 9. Let e be an edge of G. If e is a loop, then x*(G,A) = (|A| —
)x*(G—e, A). If e is not a loop, then x*(G, A) = x*(G/e, A) —x*(G—e, A).

Proof. 1f e is a loop, then a nowhere-zero A-flow in G — e extends to a
nowhere-zero A-flow in G' by setting its value on e to an arbitrary non-zero
element of A, and conversely the restriction of a nowhere-zero A-flow in G
to E(G) \ {e} is a nowhere-zero A-flow in G — e, justifying the first claim.
If e is not a loop, then note that any A-flow f’ in GG/e extends to an A-flow
f in G in unique way by setting the value on e so that the flow conservation
law holds on both ends of e; and conversely, restriction of an A-flow in G to
E(G)\ {e} is an A-flow in G/e. Furthermore, if f” is nowhere-zero, then f is
nowhere-zero everywhere except possibly on e. Finally, note that the A-flows
in G whose value is 0 exactly on e are in 1-to-1 correspondence with nowhere-

zero flows in G —e. Consequently, x*(G, A) = x*(G/e, A) —x*(G—e, A). O
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From this, we get the following by induction on the number of edges (and
noting that an edgeless graph has exactly one nowhere-zero A-flow).

Corollary 10. If Ay and Ay are finite Abelian groups of the same size,
then x*(G, A1) = x*(G, As) for every graph G. In particular, a graph has a
nowhere-zero Ai-flow iff it has a nowhere-zero As-flow.

Hence, we will say that G has a nowhere-zero k-flow if it has a nowhere-
zero A-flow for some Abelian group of size k.

Corollary 11. Let G be a graph and {e1,es} be an edge-cut in G. Then
X*(G, A) =x*(G/e1, A).

Proof. By Lemma 9, we have x*(G, A) = x*(G/e1, A) — x*(G — ey, A). How-
ever, G — ey has a bridge es, and thus x*(G' — e, A) = 0. O

Let f be an A-flow, a an element of A, and C a directed cycle. Let f+aC
denote the flow obtained from f by increasing the value on edges of C' by
a, i.e., (f 4+ aC)(uwv) = f(uwv) if wv ¢ E(C), (f + aC)(uwv) = f(uww) + a if
w € E(C), and (f + aC)(uv) = f(uv) — a if vu € E(C).

Lemma 12. If T is a spanning tree of a connected graph G, then G has an
A-flow which is zero only on a subset of edges of T.

Proof. For every e € E(G) \ E(T), let C, be directed cycle consisting of e
and the path in T joining the ends of e. Let a be a non-zero element of
A. Then >~ papper) €Ce is an A-flow in G and f(e) = a # 0 for every
e€ E(G)\ E(T). O

3 Existence of nowhere-zero flows

Since the Petersen graph is 3-regular and not 3-edge-colorable, it has no Z3-
flow. Tutte gave the following conjectures (the second one implies the Four
Color Theorem, the third one implies Grotzsch’ theorem).

Conjecture 1. 5-flow conjecture Fvery bridgeless graph has a nowhere-
zero b-flow.

4-flow conjecture Fuvery bridgeless graph not containing the Petersen graph
as a minor has a nowhere-zero 4-flow.

3-flow conjecture Fuvery 4-edge-connected graph has a nowhere-zero 3-flow.

We use the following well-known result.
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Theorem 13 (Nash-Williams). For any integer k, an 2k-edge-connected
graph has k pairwise edge-disjoint spanning trees.

Theorem 14. Every 4-edge-connected graph has a nowhere-zero 4-flow.

Proof. A 4-edge-connected graph GG has two edge-disjoint spanning trees T;
and T,. For i = 1,2, let f; be a Zs-flow in G which is zero only on a subset
of E(T;). Then f(uv) = (fi(uv), fo(uv)) is a nowhere-zero Z3-flow in G. [

Theorem 15. Fvery bridgeless graph has a nowhere-zero 8-flow.

Proof. By Corollary 11, it suffices to prove this is the case for a 3-edge-
connected graph G. Let G’ be obtained from G by doubling each edge; then
G’ is 6-edge-connected, and thus it has three pairwise edge-disjoint spanning
trees Ty, T, and T3. Each edge of G is contained in at most two of these
spanning trees. For i = 1,2, 3, let f; be a Zy-flow in G which is zero only on
a subset of E(T;). Then f(uv) = (fi(uv), fa(uv), fs(uv)) is a nowhere-zero
Z3-flow in G. O]

Lemma 16. Let G be a 3-connected graph. Then there exists a partition Vi,
..., Vi of vertices of G such that fori=1,... k,

o cither |V;| =1 or G[V;] has a Hamiltonian cycle, and

e if i > 2, then there exist at least two edges with one end in V; and the
other end in VU ...UV,_4.

Proof. Choose V) consisting of an arbitrary vertex of G. For i > 2, let B be
a leaf 2-connected block of G; = G — (V1 U...UV;_1). Since G is 3-connected
and at most one vertex separates B from the rest of G;, there exist at least
two edges e; and ey from B to Vy U ... UV, ;. If e; and ey are incident with
the same vertex v of B, we set V; = {v}. Otherwise, since B is 2-connected,
there exists a cycle C in B containing the endpoints of these two edges, and
we set V; = V(C). O

Theorem 17. Fvery bridgeless graph has a nowhere-zero 6-flow.

Proof. By Corollary 11, we can assume that G is 3-edge-connected. Further-
more, we can assume that G has maximum degree at most three (a vertex v
with neighbors vy, ..., v can be replaced by a cycle wiws ... w; and edges
wyv; for 1 < ¢ < k, and a flow in the resulting graph can be transformed
into a flow in G by contracting the cycle back into a single vertex). Hence,
G is 3-connected. Let Vi, ..., Vi be a partition of the vertex set of G as in
Lemma 16. For m =1,...,k, let @),, be the union of Hamiltonian cycles of



graphs G[V;] such that 1 <i <m and |V;| > 1. For m =2,... k, let H,, be
the subgraph of G with vertex set V3 U ... UV, that for 2 < i < m contains
exactly two edges with one end in V; and the other end in V; U ... UV,_;.
Observe that H,, U(@,, is connected and there exists a cycle C,, C H,, UQ,,
containing both edges from V,, to V; U...UV,,_1. Let fy be a Zs-flow in G
whose value is 1 on edges of @) and zero everywhere else.

Let T be a spanning tree of (), U Hy; note that T is also a spanning tree
of G. Let fx be a Z3-flow in obtained by Lemma 12, whose values are zero
only on a subset of edges of Hy U Q.. We now define Zs-flows fr_1, ..., fi1,
such that f; can only have value zero on edges of H; U(Q);. Assuming f;,, was
already constructed, we consider the three flows fi 1, fiz1 + Ci, fir1 + 2C;.
Note that one of these three flows is non-zero on both edges of H;,; between
Viep and V3 U ... UV;; we select this flow as f;. Since all the edges whose
values differ in f;,; and f; belong to H;,1 UQ}, we conclude inductively that
fi can only have zeros on dges of H; U Q.

Consequently, the Zs-flow f; has only zeros on the edges of Jx, and thus
(fo, f1) is a nowhere-zero (Zy x Z3)-flow in G. O

4 3-colorings of quadrangulations



