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1 Density of critical graphs

Recall a Gallai tree is a connected graph whose 2-connected blocks are cliques
and odd cycles. A Gallai forest is a graph whose components are Gallai trees.
From the last lecture:

Theorem 1. Let c ≥ 3 be an integer. If G is a (c + 1)-critical graph, then
δ(G) ≥ c and the vertices of degree c induce a Gallai forest in G.

We also need a bound on the number of edges of a Gallai forest.

Lemma 2. Let c ≥ 3 be an integer. If H is a Gallai forest of maximum
degree at most c not containing Kc+1, then

‖H‖ ≤
(c− 1

2
+

1

c

)
|H|.

Proof. We prove the claim by induction on the number of vertices of H.
Clearly, we can assume that H is connected. If H is 2-connected, then H is
either an odd cycle or a clique of size at most c, and thus its average degree
is at most c− 1, implying the inequality.

Hence, suppose that H is not 2-connected. Let H ′1 be a leaf block of H.
If c ≥ 4 and H ′1 is an odd cycle, or if H ′1 is a clique of size at most c − 1,
then let H1 = H ′1. Otherwise, H ′1 is (c− 1)-regular, and since the maximum
degree of H is at most c and H is a leaf block, there exists exactly one block
H ′′1 intersecting H ′1 and H ′′1 = K2; let H1 = H ′1 ∪H ′′1 . In either case,

‖H1‖ ≤
(c− 1

2
+

1

c

)
(|H1| − 1). (1)
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Let H2 be the subgraph of H such that H = H1 ∪H2 and H1 intersects H2

in exactly one vertex. Then H2 is a Gallai forest and by induction, we have

‖H2‖ ≤
(c− 1

2
+

1

c

)
|H2|. (2)

Since |H| = (|H1| − 1) + |H2| and ‖H‖ = ‖H1‖+ ‖H2‖, the inequality of the
lemma follows by summing (1) and (2).

We now can give a lower bound on the density of critical graphs.

Theorem 3. Let c ≥ 3 be an integer. If G is a (c + 1)-critical graph and
G 6= Kc+1, then G has average degree at least

c+
c− 2

c2 + 2c− 2
.

Proof. Let S be the set of vertices of G of degree c. By Theorem 1 and
Lemma 2, G[S] has at most (c− 1

2
+

1

c

)
|S|

edges. Note that c|S| is the number of edges of G incident with vertices of
S, counting those in G[S] twice. Hence,

‖G‖ ≥ c|S| − ‖G[S]‖ ≥
(c+ 1

2
− 1

c

)
|S|. (3)

All vertices of G not in S have degree at least c+ 1, and thus

2‖G‖ ≥ (c+ 1)|G| − |S|. (4)

Multiplying (4) by
(
c+1

2
− 1

c

)
and adding it to (3) gives(

c+ 2− 2

c

)
‖G‖ ≥

(c+ 1

2
− 1

c

)
(c+ 1)|G|,

and thus
c2 + 2c− 2

c
‖G‖ ≥ c3 + 2c2 − c− 2

2c
|G|,

and the average degree of G is

2‖G‖
|G|

≥ c3 + 2c2 − c− 2

c2 + 2c− 2
= c+

c− 2

c2 + 2c− 2
.
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2 Graphs on surfaces

Recall the bound on the average degree of embedded graphs.

Lemma 4. For every surface Σ and integer k ≥ 3, there exists a constant
Ck,Σ ≥ 0 such that any graph G of girth at least k embedded in Σ has average
degree at most

2k

k − 2
+ Ck,Σ/|G|.

Combining Lemma 4 and Theorem 3, we have the following.

Corollary 5. Let Σ be a surface and let k ≥ 3 and c ≥ max
(
3, 2k

k−2

)
be

integers. If a graph G is (c + 1)-critical, G 6= Kc+1, G has girth at least k
and G can be embedded in Σ, then

|G| ≤ c2 + 2c− 2

c− 2
Ck,Σ.

Recall c-colorability of a graph of girth at least k embedded in Σ can be
verified by testing the presence of all (c + 1)-critical graphs of girth at least
k embedded in Σ. Corollary 5 shows that the number of such critical graphs
is bounded when c ≥ 6, or when c, k ≥ 4, or when c ≥ 3 and k ≥ 6, newly
giving us the polynomial-time algorithm marked in red in the following table.

PPPPPPPPPgirth
colors

3 4 5 6 ≥7

3 (general) NP-hard ? P P P
4 (triangle-free) P P P P P

5 P P P P P
≥6 P P P P P

The blue entries (5-colorablility of embedded graphs and 3-colorability
of embedded graphs of girth at least 5) follow by a much more complicated
argument showing that the number of relevant critical graphs is bounded.
The green entry (3-colorability of triangle-free embedded graphs) is even
more complicated thanks to the fact that the number of critical graphs is
not bounded (but an argument that sufficiently restricts their structure is
known). The last entry (4-colorability of embedded graphs) is open; it is
known there are infinitely many 5-critical graphs embeddable in any surface
other than the sphere.
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3 Triangulations

Let G be a triangulation of an orientable surface, and let ϕ be its 4-coloring.
For distinct i, j, k ∈ [4], let nijk denote the number of faces of G whose
vertices have colors i, j, k in clockwise cyclic order. Let tijk = nijk − njik.
For a face f of G, let δijk(f) = 1 if vertices of f have colors i, j, k in clockwise
cyclic order, δijk(f) = −1 if vertices of f have colors j, i, k in clockwise cyclic
order, and δijk(f) = 0 otherwise. Clearly,

tijk =
∑

f∈F (G)

δijk(f).

For a set F ′ of faces of G, let

tijk(F ′) =
∑
f∈F ′

δijk(f).

Lemma 6. Let i, j, k, l ∈ [4] be distinct colors and let F ′ ⊆ F (G) be a set
of faces of G such that every edge of G whose ends have colors i and j is
incident with either 0 or 2 faces of F ′. Then tijk(F ′) = tjil(F

′).

Proof. By symmetry, it suffices to consider only the case i = 1, j = 2, k = 3.
Let E12 be the set of edges of G with one vertex colored 1 and the other one
2 that are incident with two faces of F ′. For e ∈ E12, let fe and f ′e be the two
faces of F ′ incident with e. Since each face of F ′ on which colors 1, 2, and 3
appear (in any order) is incident with exactly one edge of E12, we have

t123(F ′) =
∑
e∈E12

(δ123(fe) + δ123(f ′e)),

and similarly

t214(F ′) =
∑
e∈E12

(δ214(fe) + δ214(f ′e)).

Hence, to prove t123(F ′) = t214(F ′), it suffices to show that

δ123(fe) + δ123(f ′e) = δ214(fe) + δ214(f ′e)

for every edge e ∈ E12. This follows by a straightforward case analysis.

Note that applying Lemma 6 with F ′ = F (G) gives t123 = t142 = t134 =
t243.

Lemma 7. For distinct i, j, k ∈ [4], the parity of tijk is the same as the parity
of the number of vertices of G of odd degree colored by i.
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Proof. By symmetry, it suffices to prove the claim for t123 and the color 1.
Let V1 be the set of vertices of G of color 1. For v ∈ V1, let F (v) denote
the set of faces incident with v. Since each face on which colors 1, 2, and 3
appear (in any order) is incident with exactly one vertex of V1, we have

t123 =
∑
v∈V1

t123(F (v)).

Hence, it suffices to show that the parity of t123(F (v)) is the same as the
parity of deg(v) for all v ∈ V1. This is the case, since

deg(v) =
∑

f∈F (v)

|δ123(f)|+ |δ142(f)|+ |δ134(f)|

≡ t123(F (v)) + t142(F (v)) + t134(F (v)) (mod 2),

and by Lemma 6 we have t123(F (v)) = t142(F (v)) = t134(F (v)).

Corollary 8. If G is a triangulation of an orientable surface containing
exactly two vertices u and v of odd degree, then u and v have the same color
in any 4-coloring of G. In particular, if u is adjacent to v, then G is not
4-colorable.

Proof. If say u had color 1 and v color 2, then t123 is odd by Lemma 7 with
i = 1, j = 2, k = 3, and even by the same lemma with i = 3, j = 1, k = 2,
which is a contradiction.

4 Quadrangulations

Let G be a quadrangulation of a non-orientable surface. Choose an orien-
tation of each facial cycle of G (independently—this cannot be done consis-
tently, by the non-orientability of the surface). Let D denote the directed
graph with vertex set V (G) and uv being an edge of D if and only if uv is an
edge of G oriented towards v in both facial cycles of G that contain it. Let
p(G) = |E(D)| mod 2. Note that p(G) is independent of the choice of the
orientations, since reversing an orientation of a 4-face with d edges belonging
to D changes |E(D)| by 4− 2d ≡ 0 (mod 2).

Consider a 3-coloring of G. For an edge uv and distinct colors i, j ∈ [3],
let ωij(uv) = 1 if u has color i and v has color j, ωij(uv) = −1 if u has
color j and v has color i, and ωij(uv) = 0 otherwise. For an oriented cycle

C = v1 . . . vk of G, let wij(C) =
∑k

t=1 ωij(vtvt+1), where vk+1 stands for v1.
Note that similarly to Lemma 6, we have w12(C) = w23(C) = w31(C). For a
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face f of G, let w(f) be defined as wij(Cf ) for the chosen orientation of the
facial cycle Cf of f , for any (i, j) ∈ {(1, 2), (2, 3), (3, 1)}.

By considering all 3-colorings of a 4-cycle, we conclude that w(f) = 0 for
all f ∈ F (G), and thus ∑

f∈F (G)

w(f) = 0.

On the other hand, ∑
f∈F (G)

w(f) =
∑

f∈F (G)

∑
e∈E(Cf )

ωij(e)

= 2
∑

e∈E(D)

ωij(e).

We conclude that ∑
e∈E(D)

(ω12(e) + ω23(e) + ω31(e)) = 0.

Since |ω12(e) + ω23(e) + ω31(e)| = 1 for all e ∈ E(D), we have∑
e∈E(D)

(ω12(e) + ω23(e) + ω31(e)) ≡ |E(D)| ≡ p(G) (mod 2).

Consequently, we have the following.

Lemma 9. If G is a quadrangulation of a non-orientable surface and p(G) =
1, then G is not 3-colorable.

Corollary 10. If G is a non-bipartite quadrangulation of the projective plane,
then G is not 3-colorable.

Proof. Let C be an odd cycle in G. Since G is a quadrangulation, C is non-
orientable, and cutting along C turns the projective plane into a disk. Orient
the faces of G clockwise in this disk. Defining D as before, we have E(D) =
E(C), and thus p(G) = 1. Lemma 9 shows that G is not 3-colorable.
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