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1 Motivation: scheduling

Suppose we have a list of tasks, each taking one unit of time to accomplish.
The tasks can be performed in parallel, however some of the tasks conflict:
they cannot be worked on at the same time. This is expressed by a conflict
graph G, whose vertices are the tasks and edges join pairs of conflicting tasks.
There are several scheduling problems one can consider in this setting:

• Suppose the tasks are indivisible—once you start working on a task,
you must finish it (and it takes one unit of time, during which you
cannot work on the conflicting tasks). Hence, during each unit of time,
you can finish in parallel tasks corresponding to an independent set in
G, and thus the minimum time needed to finish all tasks is exactly the
chromatic number χ(G) of G.

• Suppose the tasks are divisible—you can interrupt your work on a task
at any moment and continue later, and the task is finished once you
devoted one unit of time to it in total. In this case, the minimum time
needed to finish all tasks is exactly the fractional chromatic number
χf (G) of G.

• In this lecture, we will consider the circular chromatic number of G.
This corresponds to the case that the tasks are indivisible, but they are
to be performed repeatedly; we now ask to create a periodic schedule
in which all tasks are performed for one consecutive unit of time every
t units of time, and we ask what is the minimum t for that this is
possible.

For example, suppose G is the 5-cycle v1 . . . v5. Then there exists a sched-
ule with period 2.5: for any integer i, v1 is worked on in times [2.5i, 2.5i+ 1),
v2 in times [2.5i + 1, 2.5i + 2), v3 in times [2.5i + 2, 2.5i + 3) = [2.5i +
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2, 2.5(i + 1) + 0.5), v4 in times [2.5i + 0.5, 2.5i + 1.5), and v5 in times
[2.5i+ 1.5, 2.5i+ 2.5) = [2.5i+ 1.5, 2.5(i+ 1)).

2 Definition

Note that instead of an infinitely repeating schedule, we can consider a sched-
ule consisting of intervals in a circle. For a non-negative real number t, a
circular t-coloring of a graph G is a function ι that assigns to each vertex v
of G a half-open unit interval ι(v) in a circle of circumference t, such that
ι(u)∩ ι(v) = ∅ for all uv ∈ V (G). Equivalently, we can record just the start-
ing points of the intervals: this gives a function ϕ that assigns to each vertex
v of G a point ϕ(v) of the circle, such that the distance between ϕ(u) and
ϕ(v) (measured along the circle) is at least 1 whenever uv ∈ E(G). Another
equivalent way to view this definition is as follows: suppose we cut the cir-
cle at the point 0 and map the circle to the interval [0, t). Then a circular
t-coloring is a function ϕ : V (G)→ [0, t) satisfying 1 ≤ |ϕ(u)−ϕ(v)| ≤ t− 1
for all uv ∈ E(G).

Definition 1. The circular chromatic number χc(G) of a graph G is the
infimum of real numbers t such that G has a circular t-coloring.

As we will see later, any graph G has a circular χc(G)-coloring, and thus
we could write “minimum” instead of “infimum” in the definition.

It is convenient to consider the following discretized version of circular
coloring. For any integers a ≥ 0 and b ≥ 1, a circular (a/b)-coloring of a
graph G is a function ψ : V (G) → {0, 1, . . . , a − 1} such that b ≤ |ψ(u) −
ψ(v)| ≤ a − b for all uv ∈ E(G). Clearly, ϕ(v) = ψ(v)/b is a circular t-
coloring of G for t = a/b, and thus if G has a circular (a/b)-coloring, then
χc(G) ≤ a/b.

Lemma 1. Let G be a graph.

(a) If G has a circular t-coloring and t ≤ a/b for integers a ≥ 0 and b ≥ 1,
then G has a circular (a/b)-coloring.

(b) χc(G) is infimum of
{

a
b

: a, b ∈ Z, a ≥ 0, b ≥ 1, G has a circular (a/b)-coloring}.

(c) χf (G) ≤ χc(G) ≤ χ(G) ≤ χc(G) + 1.

Proof. Let ϕ be a circular t-coloring of G. Let ψ(v) = bϕ(v)bc for all v ∈
V (G). Since ϕ(v) < t, we have ψ(v) < tb ≤ a, and since ψ(v) is an integer,
ψ(v) ∈ {0, . . . , a− 1}. Consider any edge uv of G, where w.l.o.g. ϕ(v) + 1 ≤
ϕ(u) ≤ ϕ(v) + t − 1. Then ψ(u) − ψ(v) ≥ b(ϕ(v) + 1)bc − bϕ(v)bc = b and
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ψ(u)−ψ(v) ≤ b(ϕ(v)+ t−1)bc−bϕ(v)bc ≤ bϕ(v)b+a−bc−bϕ(v)bc = a−b.
Consequently, ψ is a circular (a/b)-coloring of G, and (a) holds. The claim
(b) clearly follows from (a).

For a function θ : V (G)→ {0, 1, . . . , a−1}, note that θ is a circular (a/1)-
coloring iff θ is a proper coloring. Consequently, G has a circular (χ(G)/1)-
coloring, and thus χc(G) ≤ χ(G). Suppose that ψ is a circular (a/b)-coloring
of G. The function γ : V (G) → 2{0,...,a−1} defined by γ(v) = {ψ(v), (ψ(v) +
1) mod a, . . . , (ψ(v) + b − 1) mod a} for all v ∈ V (G) is an (a : b)-coloring
of G, and thus χf (G) ≤ a/b; by (b), we conclude that χf (G) ≤ χc(G).
Also, by (a) G has a circular (da/be/1)-coloring, which as we observed is a
proper coloring by da/be colors, and thus χ(G) ≤ da/be < a/b + 1; by (b),
we conclude that χ(G) ≤ χc(G) + 1. Hence, (c) holds.

Note also that if G has no edges, then χc(G) = χ(G) = 1, if E(G) 6= ∅
and G is bipartite, then χc(G) = χ(G) = 2, and if G is not bipartite and
contains a cycle of length 2k + 1, then χc(G) ≥ χc(C2k+1) = 2 + 1/k.

3 Circular chromatic number and orientations

Let G be a graph and let ~G be an orientation of G. For a walk W =
v0v1 . . . vk in G, we define W+ = |{i ∈ {0, . . . , k − 1} : (vi, vi+1) ∈ E(~G)}|
and W− = |{i ∈ {0, . . . , k − 1} : (vi+1, vi) ∈ E(~G)}|. For a cycle C in G
(viewed as a closed walk tracing C in either of the two possible directions),

we define bal(C) = max(|C|/C+, |C|/C−); when C is a directed cycle in ~G,

then bal(C) = ∞. Let us define bal(~G) as the maximum of bal(C) over all

cycles C in G; if E(G) = ∅ define bal(~G) = 1, and if E(G) 6= ∅ and G is

a forest, then define bal(~G) = 2. Let us define bal(G) as the minimum of

bal(~G) over all orientations of G. Note that bal(G) is always finite, since G
has an acyclic orientation.

Theorem 2. For any graph G,

χc(G) = bal(G).

Proof. If ψ is a circular (a/b)-coloring of G, then let ~G be the orientation

of G such that (u, v) ∈ E(~G) iff ψ(u) < ψ(v). Consider any cycle C =

v1v2 . . . vk in G, and set vk+1 = v1. For i = 1, . . . , k, if (vi, vi+1) ∈ E(~G), then

ψ(vi+1) ≥ ψ(vi) + b, and if (vi+1, vi) ∈ E(~G), then ψ(vi+1) ≥ ψ(vi) + b − a.
Summing these inequalities, we obtain ψ(v1) ≥ ψ(v1) + |C|b−C−a, and thus
|C|/C− ≤ a/b. Traversing the cycle C in the opposite direction, we conclude
that |C|/C+ ≤ a/b, and thus bal(C) ≤ a/b. Since this holds for all cycles in
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G, we have bal(G) ≤ bal(~G) ≤ a/b, and by Lemma 1(b), we conclude that
bal(G) ≤ χc(G).

Let us now consider an orientation ~G of G such that bal(~G) = bal(G).
W.l.o.g., G is connected and not a tree. Note that bal(G) ≥ 2 is a rational
number and we can write bal(G) = a/b for integers b ≥ 1 and a ≥ 2b. Let
v0 be an arbitrary vertex of G and let T be a spanning tree of G rooted in
v0. Let τT : V (G) → Z be the (unique) function such that τT (v0) = 0 and
for any v ∈ V (G) \ {v0}, if u is the parent of v in T , then

τT (v) =

{
τT (u) + b if (u, v) ∈ E(~G)

τT (u) + b− a if (v, u) ∈ E(~G).

Let τ(T ) =
∑

v∈V (G) τT (v). Let us choose the spanning tree T such that τ(T )
is maximum.

We claim that ψ(v) = τT (v) mod a for all v ∈ V (G) defines a circular
(a/b)-coloring of G. To see that, it suffices to prove that b ≤ |τT (u)−τT (v)| ≤
a− b for all uv ∈ E(G). By symmetry, we can assume that (u, v) ∈ E(~G).

If v is not an ancestor of u in T , then consider the spanning tree T ′ =
T − vv′ + uv, where v′ is the parent of v in T . By the choice of T , we have
τ(T ) ≥ τ(T ′), and we conclude that τT (v) ≥ τT ′(v) = τT (u) + b. If v is an
ancestor of u in T , then let P be the path in T from v to u, and let C be the
cycle consisting of P and the edge uv. By the definition of τT , we have

τT (u) = τT (v) + bP+ + (b− a)P− = τT (v) + b(C+ − 1) + (b− a)C−

= τT (v) + b(|C| − C− − 1) + (b− a)C− = τT (v) + b|C| − aC− − b.

Since bal(C) ≤ a/b, we have |C|/C− ≤ a/b, and thus b|C| ≤ aC−. Conse-
quently, τT (u) ≤ τT (v)− b, and we again conclude that τT (v) ≥ τT (u) + b.

If u is not an ancestor of v, then let u′ be the parent of u in T ; since
τ(T ) ≥ τ(T − uu′ + uv), we have τT (u) ≥ τT (v) + b− a. If u is an ancestor
of v in T , then let P be the path in T from u to v, and let C be the cycle
consisting of P and the edge vu. By the definition of τT , we have

τT (v) = τT (u) + bP+ + (b− a)P− = τT (u) + bC+ + (b− a)(C− − 1)

= τT (u) + b(|C| − C−) + (b− a)(C− − 1) = τT (u) + b|C| − aC− + a− b.

Since bal(C) ≤ a/b, we have |C|/C− ≤ a/b, and thus b|C| ≤ aC−. Con-
sequently, τT (v) ≤ τT (u) + a − b and τT (u) ≥ τT (v) + b − a in this case as
well.

We conclude that b ≤ τT (v) − τT (u) ≤ a − b for any (u, v) ∈ E(~G),
and thus ψ defined above is a circular (a/b)-coloring of G. Consequently,
χc(G) ≤ a/b = bal(G), and thus χc(G) = bal(G).
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Corollary 3. For any graph G, χc(G) is a rational number and χc(G) = a/b
for some integers a ≥ 0 and b ≥ 1 such that a ≤ |V (G)| and b ≤ |V (G)|/2.

In particular, G has a circular (a/b)-coloring such that χc(G) = a/b.
Consequently, in the definition of the circular chromatic number as well as in
Lemma 1(b), we can write “minimum” instead of “infimum”. Furthermore,
the problem of deciding whether χc(G) ≤ t for any real number t is in NP,
since it suffices guess a circular (a/b)-coloring for some integers a and b such
that 1 ≤ b ≤ |V (G)|/2 and 0 ≤ a ≤ min(|V (G)|, bt).

Corollary 4. For any graph G, χ(G) = dχc(G)e.

Proof. If χc(G) is an integer, then by Corollary 3 and Lemma 1(a), G has a
circular (χc(G)/1)-coloring, which as we observed before is a proper χc(G)-
coloring of G, and thus χ(G) ≤ χc(G). Since χc(G) ≤ χ(G) by Lemma 1(c),
we conclude that χ(G) = χc(G) = dχc(G)e.

If χc(G) is not an integer, then by Lemma 1(c), χc(G) ≤ χ(G) ≤ χc(G)+
1, and since χ(G) is an integer, it follows that χ(G) = dχc(G)e.

4 Circular chromatic number of projective pla-

nar quadrangulations

Previously, we have seen that non-bipartite quadrangulations of projective
plane have chromatic number 4. Using Theorem 2, we can easily show that
this is the case even for the circular chromatic number.

Theorem 5. If G is a non-bipartite quadrangulation of projective plane, then
χc(G) = 4.

Proof. Let G be a non-bipartite quadrangulation of projective plane; note
that G is 2-connected. By generalized Euler’s formula, it is easy to see that
G is 3-degenerate, and thus χc(G) ≤ χ(G) ≤ 4. Hence, it suffices to prove
that χc(G) ≥ 4.

Consider any orientation ~G of G. Since G is not bipartite, there exists an
odd cycle K in G; since |K| is odd, we have K+ 6= K−. Since G quadran-
gulates the surface, all contractible cycles in G have even length, and thus
K is non-contractible. Let ~G0 be the graph obtained from ~G by cutting the
projective plane along the cycle K. Note that ~G0 is a directed graph drawn in
a disk bounded by a cycle K0 of length 2|K|, and K+

0 = 2K+ 6= 2K− = K−0 .
Hence, bal(K0) > 2.

Let C be a cycle in ~G0 such that bal(C) > 2 and the disk ∆ bounded by C
is minimal; such a cycle exists by the previous paragraph. If C is not a facial
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cycle, then since G is 2-connected, there exists a path P joining two vertices
of C and drawn in ∆. Let C1 and C2 be the two cycles in C+P different from
C, and let Q1 and Q2 be the paths in C joining the endpoints of P . Note
that C+

1 = Q+
1 + P+, C−1 = Q−1 + P−, C+

2 = Q+
2 + P−, and C−2 = Q−2 + P+.

If bal(C1) = 2 and bal(C2) = 2, then C+
1 = C−1 and C+

2 = C−2 , and C+ =
Q+

1 +Q+
2 = C+

1 − P+ +C+
2 − P− = C−1 − P− +C−2 − P+ = Q−1 +Q−2 = C−,

and thus bal(C) = 2, which is a contradiction. Hence, either bal(C1) > 2 or
bal(C2) = 2; but the disks bounded by C1 and C2 are proper subsets of ∆,
which contradicts the choice of C.

Hence, C is a facial cycle, and thus |C| = 4. This implies that bal(C) ∈
{2, 4,∞}, and since bal(C) > 2, we conclude that bal(C) ≥ 4. Hence,

bal(~G) ≥ 4 for any orientation ~G of G. It follows that bal(G) ≥ 4, and by
Theorem 2, we conclude that χc(G) ≥ 4.
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