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For a graph G, let us define
p(G) :=5|G| = 3||G]|.

Note that p(K;) = 5, p(K2) = 7, and p(K3) = 6. Furthermore, if G’ is a
spanning subgraph of G, then p(G’) > p(G). Hence, p(G) > 7 for any graph
with at most 3 vertices other than K; and Kj.

Theorem 1. If G is 4-critical, then p(G) < 2, and thus

5|G| —2

Gl >
[

We say a graph G is a counterezample if G is 4-critical and p(G) > 3.
The graph G is a minimal counterezample if G is a counterexample and
there is no counterexample G’ satisfying either |G’| < |G|, or |G’| = |G| and
|G|l < |G| Since p(K4) = 2, a minimal counterexample must have at least
5 vertices.

Lemma 2. Let G be a minimal counterexample and let S # V(G) be a set of
its vertices of size at least 4. Let Sy C S be the set of vertices of S that have a
neighbor in V(G)\ S. Then there exists a graph G' C G such that G[S] € G’
and p(G") < p(G[S]) — 3. Furthermore, if there exists a 3-coloring of G[S]
that uses at least two distinct colors on Sy, then either p(G') < p(G[S]) — 4
or G' #£ G.

Proof. Let ¢ be a proper 3-coloring of G[S] (which exists since G is 4-critical).
If possible, choose ¢ so that at least two distinct colors appear on Sy.

Let GGy be the graph obtained from G by adding a triangle T = x1x5x3
and identifying all vertices in ¢~!(i) with z; for i = 1,2,3. Clearly, any
3-coloring of G; would give a 3-coloring of GG, and since x(G) = 4, no such 3-
coloring exists. Hence, GGy has a 4-critical subgraph G5. By the minimality of
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G, the graph G is not a counterexample, and thus p(Gs) < 2. Furthermore,
(G5 is not a subgraph of G, and thus 7" := T N G5 is non-empty. Let G’ be
the graph obtained from Gy by replacing 7" with G[S]—we have V(G') =
(V(G)\V(T"))uS and E(G") = (E(G2)\ E(T")UE(G]S]). Since p(Gy) < 2
and 7" is a non-empty graph on at most three vertices, we have

p(G") = p(Ga) — p(T") + p(G[S]) < p(G[S]) - 3,

as required.

Furthermore, the equality holds only if 77 = Kj; say V(T') = z;. If
additionally G’ = G, then G contains all edges between Sy and V(G) \ S,
and thus all these edges are incident with z;. Equivalently, all vertices of .S
have color 1 in the coloring ¢. [

Lemma 3. Let G be a minimal counterexample. If H is a proper subgraph
of G with at least two vertices, then p(H) > 6.

Proof. The claim is easy to verify when |V(H)| < 3. Let H be a proper
subgraph of G with at least 4 vertices such that p(H) is minimum; we only
need to show that p(H) > 6.

If H is not an induced subgraph, then there exists an edge e € E(G) \
E(H) with both ends in V(H). We have p(H + e) < p(H); the minimality
of p(H) implies that H + e = G. Since G is a counterexample, we have
p(G) > 3, and thus p(H) = p(G) + 3 > 6. Hence, we can assume that H is
an induced subgraph of G.

Let S = V(H). Since H is a proper (induced) subgraph, we have S #
V(G). By Lemma 2, there exists G’ C G such that H = G[S] € G’ a
p(G") < p(H) — 3. By the minimality of p(H), we have G’ = G, and thus
p(H) > p(G") +3 =p(G) +3 > 6. O

Corollary 4. Let G be a minimal counterezample. If H is a proper subgraph
of G such that either |H| < |G| or ||H|| < ||G|| — 2, then for any distinct
u,v € V(H), the graph H + uv is 3-colorable.

Proof. If H + uv is not 3-colorable, then it contains a 4-critical subgraph
H', with either |H'| < |G| or ||[H'|| < ||G|| — 1. By the minimality of G,
we conclude that H’ is not a counterexample, and thus p(H') < 2, and
p(H'" — uv) < 5. Since H' is a proper subgraph of G with at least two
vertices, this contradicts Lemma 3. O]

Lemma 5. Let G be a minimal counterexample, and let H be a proper sub-
graph of G. If H #+ Ky, K3 and H is not obtained from G by removing one
edge, then p(H) > 7.



Proof. The claim is easy to verify when |V(H)| < 3. Let H be a proper
subgraph of G with at least 4 vertices, not obtained from G by removing one
edge, and such that p(H) is minimum; we only need to show that p(H) > 7.

If H is not an induced subgraph, then there exists an edge ¢ € E(G) \
E(H) with both ends in V(H). Since p(H + €¢') < p(H), the minimality
of p(H) implies that H + ¢ = G — e for some edge e € E(G). However,
p(G) > 3, and thus p(H) = p(G) + 6 > 9. Hence, we can assume that H is
an induced subgraph of G.

Let S = V(H) and let Sy C S consist of the vertices with a neighbor
in V(G) \ S. Since G is 4-critical, it is 2-connected, and thus |Sy| > 2.
Let u,v € Sy be distinct, and let e, and e, be edges joining them to their
neighbors in V/(G) \ S. By Corollary 4, there exists a proper 3-coloring of
H + wv; this coloring uses at least two distinct colors on Sy. By Lemma 2,
there exists G’ C G such that either p(G') < p(H) — 4, or p(G’) = p(G) — 3
and G’ # G.

By the minimality of p(H), we have either G’ = G — e for some edge
e€ E(G),or G'=G. f G"=G —e, then p(H) > p(G')+3 =p(G)+6 > 9.
If =G, then p(H) > p(G') +4=p(G)+4 > T. O

Lemma 6. If G is a minimal counterexample, then each triangle in G con-
tains at most one vertex of degree 3.

Proof. Suppose for a contradiction that T" = vyvyvs is a triangle in G such
that deg(v;) = deg(vy) = 3. Let x; and x5 be the neighbors of v; and
vy outside of T. If xy = w9, then adding the edge ziv3 would create Ky,
contradicting Corollary 4. Hence, x1 # x9. Let Gy = G —{v1,v2} +x129. By
Corollary 4, there exists a 3-coloring ¢ of G;. Since ¢(x1) # p(x2), we can by
symmetry assume that ¢(z1) = 1, p(v3) = 3, and p(z2) € {2,3}. Coloring
vy by 2 and v9 by 1, we obtain a 3-coloring of GG, which is a contradiction. [J

Lemma 7. If G is a minimal counterezample, uv € E(G), and deg(u) =
deg(v) = 3, then u is contained in a triangle.

Proof. Let xy and x5 be the neighbors of u distinct from v. Suppose for
a contradiction that x;xe € E(G). Let G7 be the graph obtained from
G —{u, v} by identifying x; and x5 to a single vertex x. Any 3-coloring of G
clearly extends to a 3-coloring of GG; we conclude that (G is not 3-colorable,
and thus it contains a 4-critical subgraph G5. Since G5 € G, we conclude that
x € V(Gg). The minimality of G implies that G5 is not a counterexample,
and thus p(Gs) < 2. Let G5 be the subgraph of G obtained from Gy by
decontracting = and adding the path zjuxs. We have p(G3) = p(G2) +4 < 6.
Furthermore, v € V(G3), and thus G5 is a proper subgraph of G and it is
not obtained from G by removing an edge. This contradicts Lemma 5. [
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Corollary 8. If G is a minimal counterezample, then each vertex of degree
3 has at most one neighbor of degree three.

Proof. Suppose u is a vertex of degree 3 with neighbors vy, vy, and vs.
If deg(v;) = 3, then Lemmas 7 and 6 imply that uwvyvs is a triangle and
deg(vy), deg(vs) > 4. O

We are now ready to prove the main result.

Proof of Theorem 1. Suppose for a contradiction that there exists a coun-
terexample, and let G be a minimal one. Give each vertex v charge 5 —
3 deg(v)/2; the sum of charges is equal to p(G).

Each vertex of degree three sends 1/4 to each incident vertex of degree
at least four. By Corollary 8, the final charge of a vertex of degree three is
at most 1/2—2x1/4 =0. A vertex v of degree at least 4 has final charge at
most (5 —3deg(v)/2)+deg(v) x1/4 =5—5deg(v)/4 < 0. Hence, all charges
are non-positive. Since no charge was created or lost, the sum of charges is
still equal to p(G), and thus p(G) < 0. This contradicts the assumption that
p(G) > 3. O

1 Consequences

Corollary 9. Let G be a graph. If p(G') > 3 for every G' C G, then G is
3-colorable.

Theorem 10. FEvery planar graph G of girth at least 5 is 3-colorable. Fur-
thermore, if u and v are non-adjacent vertices of G, then there exists a 3-
coloring that gives u and v the same color, as well as a 3-coloring that gives
u and v different colors.

Proof. Every planar graph H of girth at least 5 with at least four vertices
satisfies [|H|| < 2(|H| — 2). Hence, p(H) > 10. If H has at most three
vertices, then H is a forest, and thus p(H) > 3 + 2|H|.

Therefore, each subgraph G’ C G satisfies p(G’) > 5, and thus G is 3-
colorable by Corollary 9. If G’ C G + uv, then G’ is obtained from a planar
graph of girth at least 5 by adding at most one edge, and thus p(G’) > 7—3 >
3; hence, G + uv is also 3-colorable, and thus G has a 3-coloring in which
and v have different colors.

Let G; be the graph obtained from G by identifying u with v to a new
vertex w. If Gy is not 3-colorable, then it has a 4-critical subgraph G,
necessarily containing w. Let G% be the subgraph of G obtained from Gy
by un-identifying v and v. By Theorem 1, we have p(G5) = p(G2) +5 < 7.
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Since GY is planar and has girth at least 5, we conclude that |V (G5)| < 3.
But then G5 is 3-colorable, which is a contradiction. O

Theorem 11 (Grétzsch). Every planar triangle-free graph is 3-colorable.

Proof. Suppose for a contradiction that G is a planar triangle-free graph that
is not 3-colorable, and let us choose such a graph with |G| + ||G|| minimum.
Clearly, G is 4-critical.

Note that G is 2-connected. If all faces of G have length at least 5, then
Euler’s formula gives p(G) > 10, contradicting Theorem 1. Hence, G has a
4-face viv9v3v4. Note that G cannot contain paths of length 3 both between
vy and vz, and between v, and vs—such paths would have to intersect by
planarity, resulting in a triangle. Hence, there is no such path say between
v; and v3. Let G’ be the graph obtained from G by identifying v; with vz to
a new vertex x. Note that G’ is planar and triangle-free. By the minimality
of G, the graph G’ is 3-colorable. However, giving v; and wv3 the color of
2 turns a proper 3-coloring of G’ to a proper 3-coloring of G, which is a
contradiction. O



