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For a graph G, let us define

p(G) := 5|G| − 3‖G‖.

Note that p(K1) = 5, p(K2) = 7, and p(K3) = 6. Furthermore, if G′ is a
spanning subgraph of G, then p(G′) ≥ p(G). Hence, p(G) ≥ 7 for any graph
with at most 3 vertices other than K1 and K3.

Theorem 1. If G is 4-critical, then p(G) ≤ 2, and thus

‖G‖ ≥ 5|G| − 2

3
.

We say a graph G is a counterexample if G is 4-critical and p(G) ≥ 3.
The graph G is a minimal counterexample if G is a counterexample and
there is no counterexample G′ satisfying either |G′| < |G|, or |G′| = |G| and
‖G′‖ < ‖G‖. Since p(K4) = 2, a minimal counterexample must have at least
5 vertices.

Lemma 2. Let G be a minimal counterexample and let S 6= V (G) be a set of
its vertices of size at least 4. Let S0 ⊆ S be the set of vertices of S that have a
neighbor in V (G) \S. Then there exists a graph G′ ⊆ G such that G[S] ( G′

and p(G′) ≤ p(G[S]) − 3. Furthermore, if there exists a 3-coloring of G[S]
that uses at least two distinct colors on S0, then either p(G′) ≤ p(G[S]) − 4
or G′ 6= G.

Proof. Let ϕ be a proper 3-coloring of G[S] (which exists since G is 4-critical).
If possible, choose ϕ so that at least two distinct colors appear on S0.

Let G1 be the graph obtained from G by adding a triangle T = x1x2x3
and identifying all vertices in ϕ−1(i) with xi for i = 1, 2, 3. Clearly, any
3-coloring of G1 would give a 3-coloring of G, and since χ(G) = 4, no such 3-
coloring exists. Hence, G1 has a 4-critical subgraph G2. By the minimality of
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G, the graph G2 is not a counterexample, and thus p(G2) ≤ 2. Furthermore,
G2 is not a subgraph of G, and thus T ′ := T ∩ G2 is non-empty. Let G′ be
the graph obtained from G2 by replacing T ′ with G[S]—we have V (G′) =
(V (G2)\V (T ′))∪S and E(G′) = (E(G2)\E(T ′))∪E(G[S]). Since p(G2) ≤ 2
and T ′ is a non-empty graph on at most three vertices, we have

p(G′) = p(G2)− p(T ′) + p(G[S]) ≤ p(G[S])− 3,

as required.
Furthermore, the equality holds only if T ′ = K1; say V (T ′) = x1. If

additionally G′ = G, then G2 contains all edges between S0 and V (G) \ S,
and thus all these edges are incident with x1. Equivalently, all vertices of S0

have color 1 in the coloring ϕ.

Lemma 3. Let G be a minimal counterexample. If H is a proper subgraph
of G with at least two vertices, then p(H) ≥ 6.

Proof. The claim is easy to verify when |V (H)| ≤ 3. Let H be a proper
subgraph of G with at least 4 vertices such that p(H) is minimum; we only
need to show that p(H) ≥ 6.

If H is not an induced subgraph, then there exists an edge e ∈ E(G) \
E(H) with both ends in V (H). We have p(H + e) < p(H); the minimality
of p(H) implies that H + e = G. Since G is a counterexample, we have
p(G) ≥ 3, and thus p(H) = p(G) + 3 ≥ 6. Hence, we can assume that H is
an induced subgraph of G.

Let S = V (H). Since H is a proper (induced) subgraph, we have S 6=
V (G). By Lemma 2, there exists G′ ⊆ G such that H = G[S] ( G′ a
p(G′) ≤ p(H) − 3. By the minimality of p(H), we have G′ = G, and thus
p(H) ≥ p(G′) + 3 = p(G) + 3 ≥ 6.

Corollary 4. Let G be a minimal counterexample. If H is a proper subgraph
of G such that either |H| < |G| or ‖H‖ ≤ ‖G‖ − 2, then for any distinct
u, v ∈ V (H), the graph H + uv is 3-colorable.

Proof. If H + uv is not 3-colorable, then it contains a 4-critical subgraph
H ′, with either |H ′| < |G| or ‖H ′‖ ≤ ‖G‖ − 1. By the minimality of G,
we conclude that H ′ is not a counterexample, and thus p(H ′) ≤ 2, and
p(H ′ − uv) ≤ 5. Since H ′ is a proper subgraph of G with at least two
vertices, this contradicts Lemma 3.

Lemma 5. Let G be a minimal counterexample, and let H be a proper sub-
graph of G. If H 6= K1, K3 and H is not obtained from G by removing one
edge, then p(H) ≥ 7.
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Proof. The claim is easy to verify when |V (H)| ≤ 3. Let H be a proper
subgraph of G with at least 4 vertices, not obtained from G by removing one
edge, and such that p(H) is minimum; we only need to show that p(H) ≥ 7.

If H is not an induced subgraph, then there exists an edge e′ ∈ E(G) \
E(H) with both ends in V (H). Since p(H + e′) < p(H), the minimality
of p(H) implies that H + e′ = G − e for some edge e ∈ E(G). However,
p(G) ≥ 3, and thus p(H) = p(G) + 6 ≥ 9. Hence, we can assume that H is
an induced subgraph of G.

Let S = V (H) and let S0 ⊆ S consist of the vertices with a neighbor
in V (G) \ S. Since G is 4-critical, it is 2-connected, and thus |S0| ≥ 2.
Let u, v ∈ S0 be distinct, and let eu and ev be edges joining them to their
neighbors in V (G) \ S. By Corollary 4, there exists a proper 3-coloring of
H + uv; this coloring uses at least two distinct colors on S0. By Lemma 2,
there exists G′ ⊆ G such that either p(G′) ≤ p(H)− 4, or p(G′) = p(G)− 3
and G′ 6= G.

By the minimality of p(H), we have either G′ = G − e for some edge
e ∈ E(G), or G′ = G. If G′ = G− e, then p(H) ≥ p(G′) + 3 = p(G) + 6 ≥ 9.
If G′ = G, then p(H) ≥ p(G′) + 4 = p(G) + 4 ≥ 7.

Lemma 6. If G is a minimal counterexample, then each triangle in G con-
tains at most one vertex of degree 3.

Proof. Suppose for a contradiction that T = v1v2v3 is a triangle in G such
that deg(v1) = deg(v2) = 3. Let x1 and x2 be the neighbors of v1 and
v2 outside of T . If x1 = x2, then adding the edge x1v3 would create K4,
contradicting Corollary 4. Hence, x1 6= x2. Let G1 = G−{v1, v2}+x1x2. By
Corollary 4, there exists a 3-coloring ϕ of G1. Since ϕ(x1) 6= ϕ(x2), we can by
symmetry assume that ϕ(x1) = 1, ϕ(v3) = 3, and ϕ(x2) ∈ {2, 3}. Coloring
v1 by 2 and v2 by 1, we obtain a 3-coloring of G, which is a contradiction.

Lemma 7. If G is a minimal counterexample, uv ∈ E(G), and deg(u) =
deg(v) = 3, then u is contained in a triangle.

Proof. Let x1 and x2 be the neighbors of u distinct from v. Suppose for
a contradiction that x1x2 6∈ E(G). Let G1 be the graph obtained from
G−{u, v} by identifying x1 and x2 to a single vertex x. Any 3-coloring of G1

clearly extends to a 3-coloring of G; we conclude that G1 is not 3-colorable,
and thus it contains a 4-critical subgraph G2. Since G2 6⊆ G, we conclude that
x ∈ V (G2). The minimality of G implies that G2 is not a counterexample,
and thus p(G2) ≤ 2. Let G3 be the subgraph of G obtained from G2 by
decontracting x and adding the path x1ux2. We have p(G3) = p(G2)+4 ≤ 6.
Furthermore, v 6∈ V (G3), and thus G3 is a proper subgraph of G and it is
not obtained from G by removing an edge. This contradicts Lemma 5.
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Corollary 8. If G is a minimal counterexample, then each vertex of degree
3 has at most one neighbor of degree three.

Proof. Suppose u is a vertex of degree 3 with neighbors v1, v2, and v3.
If deg(v1) = 3, then Lemmas 7 and 6 imply that uv2v3 is a triangle and
deg(v2), deg(v3) ≥ 4.

We are now ready to prove the main result.

Proof of Theorem 1. Suppose for a contradiction that there exists a coun-
terexample, and let G be a minimal one. Give each vertex v charge 5 −
3 deg(v)/2; the sum of charges is equal to p(G).

Each vertex of degree three sends 1/4 to each incident vertex of degree
at least four. By Corollary 8, the final charge of a vertex of degree three is
at most 1/2− 2× 1/4 = 0. A vertex v of degree at least 4 has final charge at
most (5−3 deg(v)/2)+deg(v)×1/4 = 5−5 deg(v)/4 ≤ 0. Hence, all charges
are non-positive. Since no charge was created or lost, the sum of charges is
still equal to p(G), and thus p(G) ≤ 0. This contradicts the assumption that
p(G) ≥ 3.

1 Consequences

Corollary 9. Let G be a graph. If p(G′) ≥ 3 for every G′ ⊆ G, then G is
3-colorable.

Theorem 10. Every planar graph G of girth at least 5 is 3-colorable. Fur-
thermore, if u and v are non-adjacent vertices of G, then there exists a 3-
coloring that gives u and v the same color, as well as a 3-coloring that gives
u and v different colors.

Proof. Every planar graph H of girth at least 5 with at least four vertices
satisfies ‖H‖ ≤ 5

3
(|H| − 2). Hence, p(H) ≥ 10. If H has at most three

vertices, then H is a forest, and thus p(H) ≥ 3 + 2|H|.
Therefore, each subgraph G′ ⊆ G satisfies p(G′) ≥ 5, and thus G is 3-

colorable by Corollary 9. If G′ ⊆ G+ uv, then G′ is obtained from a planar
graph of girth at least 5 by adding at most one edge, and thus p(G′) ≥ 7−3 >
3; hence, G + uv is also 3-colorable, and thus G has a 3-coloring in which u
and v have different colors.

Let G1 be the graph obtained from G by identifying u with v to a new
vertex w. If G1 is not 3-colorable, then it has a 4-critical subgraph G2,
necessarily containing w. Let G′2 be the subgraph of G obtained from G2

by un-identifying u and v. By Theorem 1, we have p(G′2) = p(G2) + 5 ≤ 7.
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Since G′2 is planar and has girth at least 5, we conclude that |V (G′2)| ≤ 3.
But then G2 is 3-colorable, which is a contradiction.

Theorem 11 (Grötzsch). Every planar triangle-free graph is 3-colorable.

Proof. Suppose for a contradiction that G is a planar triangle-free graph that
is not 3-colorable, and let us choose such a graph with |G|+ ‖G‖ minimum.
Clearly, G is 4-critical.

Note that G is 2-connected. If all faces of G have length at least 5, then
Euler’s formula gives p(G) ≥ 10, contradicting Theorem 1. Hence, G has a
4-face v1v2v3v4. Note that G cannot contain paths of length 3 both between
v1 and v3, and between v2 and v4—such paths would have to intersect by
planarity, resulting in a triangle. Hence, there is no such path say between
v1 and v3. Let G′ be the graph obtained from G by identifying v1 with v3 to
a new vertex x. Note that G′ is planar and triangle-free. By the minimality
of G, the graph G′ is 3-colorable. However, giving v1 and v3 the color of
x turns a proper 3-coloring of G′ to a proper 3-coloring of G, which is a
contradiction.
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