Problem B

Continuing our analysis, we are interested in creating a dictionary from all the substrings of the given text. More precisely, let D be the set of all non-empty substrings that appear in the text; for example, for the text "aabab", we have

$$
D=\{\mathrm{a}, \mathrm{aa}, \mathrm{a} a \mathrm{~b}, \mathrm{aaba}, \mathrm{a} a \mathrm{bab}, \mathrm{ab}, \mathrm{aba}, \mathrm{abab}, \mathrm{~b}, \mathrm{ba}, \mathrm{bab}\} .
$$

We are interested in, for a given k, finding the k-th lexicographically smallest of these strings (the elements of D above are presented in the lexicographic order, so for example for $k=3$, we want to return the string "aab").

Input and output

The first line contains a string S of length at most 100000 consisting only of lowercase letters. The second line contains a single integer $k(1 \leq k \leq$ 10^{9}). Output the k-th lexicographically smallest non-empty substring of S (it is guaranteed k is at most as large as the number of distinct non-empty substrings of S).

Example

Input:
aabab
3
Output:
aab

