Problem B

Our country is an $n \times n$ grid of squares, each owned by one of the citizens. The distance between the squares is measured in the Manhattan metric, i.e., the distance between squares with coordinates $\left(r_{1}, c_{1}\right)$ and $\left(r_{2}, c_{2}\right)$ is $\left|r_{1}-r_{2}\right|+$ $\left|c_{1}-c_{2}\right|$. We need to answer a number of queries of form "What is the minimum distance from the given square to one owned by the given citizen"?

Input and output

The first line contains integers $n \leq 300$ and $m \leq 100000$, the size of the square grid and the number of queries. Each of the next n lines contans n integers, giving the id's of the citizens owning the squares. Each id is between 1 and 10^{9}. The r-th line gives the owners of squares with coordinates $(r, 1),(r, 2), \ldots$, (r, n), in order.

Each of the following m lines contains three integers r, c, and $i(1 \leq r, c \leq n$, $1 \leq i \leq 10^{9}$. For each such line, output a line containing a single integer, the minimum distance from the square (r, c) to one owned by citizen i. It is guaranteed the citizen owns at least one of the squares.

Example

Input:
43
1215
5795
2225
5555
321
331
332
Output:

