Problem A

Let G be the $3 \times n$ cylindrical grid, i.e., the graph with vertex set $\{(x, y)$: $x \in\{1, \ldots, n\}, y \in\{1,2,3\}\}$, where distinct vertices $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are adjacent iff $x_{1}=x_{2}$ and $\left|y_{1}-y_{2}\right|=1$, or $y_{1}=y_{2}$ and either $\left|x_{1}-x_{2}\right|=1$ or $\left\{x_{1}, x_{2}\right\}=\{1, n\}$. Compute the number of proper k-colorings of G.

Input and output

The input consists of a single line containing two integers n and $k\left(3 \leq n \leq 10^{18}\right.$, $3 \leq k \leq 1000)$. Output a single integer, the number of proper k-colorings of the cylindical $3 \times n$ grid, modulo $10^{9}+7$.

Example

Input:
55
Output:
132115320

