Problem A

We play the following variant of the NIM game: We have n piles of matches. The two players alternate. In each turn, the current player takes from a single pile a positive number of matches, but at most $\lceil s / 2\rceil$, where s is the size of the pile. The player who cannot make a valid move loses.

Input and output

The first line contains a single integer $n \leq 10$, the number of piles. The i-th of the n following lines contains a single integer $s_{i}\left(1 \leq s_{i} \leq 10^{6}\right)$, the number of matches on the i-th pile. You are guaranteed that the first player to move has a winning strategy from the described position.

On each line of the output, write out two positive integers $a(1 \leq a \leq n)$ and t, describing a valid move of the first player from the current position: Take t matches from the a-th pile. In their move, the second player always takes one match from the non-empty pile with the smallest possible number; however, you are not allowed to take advantage of this: You must make sure that after each of your moves, the second player does not have any winning strategy.

Example

Input:
3
1
2
3

Output:
32
31
21

