Problem A

We maintain a database of the historical temperature data. For each of the days $i=1, \ldots, n(n \leq 100000)$, we record the average temperature t_{i} (where t_{i} is an integer and $-50 \leq t_{i} \leq 50$). Occasionally, we need to correct an error and change one of the values. Also, we need to test the hypotheses of form "for $a \leq i \leq b$, the temperature is approximately $c i+d "$; to this end, we need to compute

$$
\operatorname{dev}(a, b, c, d)=\sqrt{\frac{\sum_{i=a}^{b}\left(t_{i}-c i-d\right)^{2}}{b-a+1}}
$$

Input and output

The first line contains the integer n, followed by n integers t_{1}, \ldots, t_{n}. Each of the following lines is of form

- "C $i t$ ": change t_{i} to t, or
- "D $a b c d$ ", where $1 \leq a \leq b \leq n$ are integers and c and d are real numbers, write out a single line containing the value of $\operatorname{dev}(a, b, c, d)$ rounded to two decimal places. It is guaranteed that this value is at most 100 .

Example

Input:
3123
D 2304
C 23
D 130.51
Output:
1.58
0.71

Problem B

We have a sparse array of integers smaller or equal to 1000 in the absolute value, indexed by integers in $\left\{0, \ldots, 10^{9}\right\}$. There are at most 100000 elements in this array. We want to be able to

- compute the sum of values indexed by integers in $\{a, \ldots, b\}$,
- add a given integer $d(|d| \leq 2000)$ to all values indexed by integers in $\{a, \ldots, b\}$, outputing an error if any of the values becomes larger than 1000 in the absolute value (no values are changed if that is the case), and
- negate all values indexed by integers in $\{a, \ldots, b\}$.

Input and output

The first line contains the integer $n \leq 100000$. On each of following n lines, there are two integers i and v, indicating that the value in the array at index i is v. Each of the following lines is of form

- "S $a b$ ": write out a single line containing the sum of values indexed by integers in $\{a, \ldots, b\}$;
- "A $a b d$ ": add d to all values indexed by integers in $\{a, \ldots, b\}$ and write out a single line containing the string "OK"; if any value would become larger than 1000 in the absolute value, do not change any values and write out a single line containing the string "ERROR", instead;
- "N $a b$ ": negate all values indexed by integers in $\{a, \ldots, b\}$, do not write out anything.

Example

Input:
3
1000100
1010
2000-100
S 202000
A 202000901
A 202000900
N 01300
S 202000
Output:
0
ERROR
OK
-200

