
Problem B

We have a network of computers, some of which are clients and servers. When
some of the clients want to accomplish a task, each of them has to pick a distinct
server to communicate with. Furthermore, as the amount of data that needs
to be transferred between the servers and clients is huge, each of them has to
pick a path through the network along which it sends data, and the paths for
different clients cannot pass through the same computer.

This is not always possible. Hence, each client will also tell us how much
it is willing to pay to accomplish its task. We want to select a subset of the
clients that can work on their tasks simultaneously so that we earn as much as
possible.

More precisely, let G be a graph and let C and S be disjoint sets of vertices
of G. A set C ′ ⊆ C is viable if G contains |C ′| pairwise vertex-disjoint paths
starting in C ′ and ending in S (the paths can pass through other vertices of C).
Given an assignment of weights to vertices of C, find a viable subset of C whose
total weight is maximum.

Input and output

The first line contains integers n,m ≤ 100 000, the number of vertices and edges
of G, and integers 1 ≤ c, s ≤ 100 such that c+ s ≤ n, the number of clients and
servers. The vertices of G are numbered from 1 to n, the vertices 1, . . . , c are
clients, the vertices n − s + 1, . . . , s are servers. Each of the following m lines
contains three integers u and v, where 1 ≤ u < v ≤ n; this indicates G contains
an edge between u and v. You can assume that G contains at most one edge
between any two vertices.

Each of the following lines describes a scenario. It contains c pairwise dif-
ferent positive integers smaller than 10 000, indicating how much are the clients
1, . . . , c willing to pay to accomplish a task. For each of them, output a viable
subset of clients whose total weight is maximum; the numbers of selected clients
should be listed in increasing order and separated by spaces.

Example

Input:

5 6 3 2

1 2

2 4

2 5

4 5

3 4

3 5

5 10 1

10 5 1

1

Output:

2 3

1 3

2

