Problem A

A graph H is sparse if every subgraph of H has at most as many edges as vertices. So, for example, the following graph

is not sparse: while the graph itself has fewer vertices than edges, its subgraph induced by the red vertices has four vertices and five edges.

Given a graph G with weights on edges, determine the maximum possible sum of weights of edges in a sparse subgraph of G.

Input and output

The first line contains two integers $n, m \leq 1000000$, the number of vertices and edges of G. The vertices of G are numbered from 1 to n. Each of the following m lines contains three integers u, v, and w, where $1 \leq u<v \leq n$ and $1 \leq d \leq 1000$; this indicates G contains an edge between u and v of weight w. You can assume that G contains at most one edge between any two vertices.

Output a single integer: the maximum possible sum of weights of edges in a sparse subgraph of G.

Example

Input:
45
121
232
343
144
245
Output:

