Problem B

As an art project, you built a structure which consists of a row of n columns of cubes of the same size, where the i-th column has height h_{i}. However, you just now learned that the safety regulations require that any two adjacent columns differ by at most D in height. In one unit of time, you can increase or decrease the height of any column by 1 . The exhibition starts soon, and so you need to make the structure compliant with the safety regulations as fast as possible.

Input and output

The first line contains two integers n and $D\left(1 \leq n \leq 2 \cdot 10^{5}, 0 \leq D \leq\right.$ 10^{9}), giving the number of columns of the structure and the maximum allowed difference between adjacent columns. The second line contains n non-negative integers $h_{1}, \ldots, h_{n}\left(h_{i} \leq 10^{9}\right)$, where h_{i} is the height of the i-th column in the initial structure.

Remark: You can earn half the points for a solution that is fast enough to solve the task for $n \leq 10^{3}$.

Output a single integer t, the minimum amount of time needed to make the structure compliant to the safety regulations. More precisely, t is the minimum of $\sum_{i=1}^{n}\left|a_{i}-h_{i}\right|$ over all sequences a_{1}, \ldots, a_{n} of non-negative integers such that $\left|a_{j}-a_{j+1}\right| \leq D$ for $j=1, \ldots, n-1$.

Example

Input:
61
2100243
Output:
10
You can reduce the height of the second column 8 times and increase the height of the third and the fifth column once, obtaining a safe sequence 221 233 in 10 units of time.

