## Problem A

We are given two sequences $A$ and $B$ such that the elements of $A$ (but not necessarily in $B$ ) are pairwise distinct. How many elements do we need to delete from $B$ to obtain a subsequence of $A$ ? The elements of this subsequence in $A$ do not have to be consecutive, but we are not allowed to change their order.

## Input and output

The first line contains two integers $n$ and $m$, where $n, m \leq 10^{6}$. The second line contains $n$ pairwise distinct positive integers (smaller than $10^{9}$ ), the sequence $A$. The second line contains $m$ (not necessarily distinct) positive integers (smaller than $10^{9}$ ), the sequence $B$.

Output a single integer, the number of elements that we need to delete from $B$ in order to obtain a subsequence of $A$.

Remark: You can get half the points for a solution that manages to solve the task when $n, m \leq 5000$.

## Example

Input:
56
321109
731219
Output:

