Problem B

You are given a tree T and the length of each of its edges. For a sequence of pairs u, v of vertices of T, determine the distance between u and v in T. You can get half of the points for a solution that knows the sequence in advance.

Input and output

The first line contains two integers n and $b\left(1 \leq n \leq 10^{5}, 0 \leq b<n\right)$, where n is the number of vertices of the tree. The vertices are numbered from 0 to $n-1$. The i-th of the following $n-1$ lines contains two integers p and $l(0 \leq p<i$, $0 \leq l \leq 1000$), indicating that the vertices i and p are joined by an edge of length l.

On each of the following (at most 300000) lines, there is a pair of integers u^{\prime} and $v^{\prime}\left(0 \leq u^{\prime}, v^{\prime}<n\right)$. Let r be the last number you wrote out ($r=0$ at the beginning). Let $u=\left(u^{\prime}+b r\right) \bmod n$ and $v=\left(v^{\prime}+b r\right) \bmod n$. Write out the distance between the vertices u and v in T.

For half the points, you can assume that $b=0$, and thus $(u, v)=\left(u^{\prime}, v^{\prime}\right)$.

Example

Input:
42
01
02
23
12
12

Output:
3
5
Note: The second query decodes to $u=3$ and $v=0$.

