Problem A

Compute the volume of a triangulated 3D body. You are given the vertices and edges of the body, and you can assume that every face is a triangle and that every triangle forms a face.

Input and output

The first line of the input contains an integer $n\left(4 \leq n \leq 10^{5}\right)$, the number of vertices of the body. The i-th of the following n lines contains three integers x_{i}, y_{i}, and $z_{i}\left(-10^{4} \leq x_{i}, y_{i}, z_{i} \leq 10^{4}\right)$, the coordinates of the vertex number i. Each of the following $3 n-6$ lines contains two integers u and v, indicating that the vertices u and v are connected by an edge.

Output a single line, containing the volume of the body multiplied by 6 .

Example

Input:
4
000
100
010
001
12
13
14
23
24
34

Output:

