Problem B

For a permutation $\pi:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$, a π-rearrangement of a string $S=s_{1} s_{2} \ldots s_{n}$ is the string whose i-th character is $s_{\pi(i)}$.

You are given two permutations π_{1} and π_{2} of $\{1, \ldots, n\}$. We consider two strings of length n to be the same if one can be transformed into the other one by a sequence of π_{1} - and π_{2}-rearrangements (the sequence can be arbitrarily long and the permutations can be used in any order). How many different strings of length n consisting of letters $\mathrm{a}, \ldots, \mathrm{z}$ are there?

Input and output

The first line contains a single integer $n(1 \leq n \leq 10)$. The second line contains a permutation $\{1, \ldots, n\}$, the values $\pi_{1}(1), \ldots, \pi_{1}(n)$ in order. The third line contains a permutation $\{1, \ldots, n\}$, the values $\pi_{2}(1), \ldots, \pi_{2}(n)$ in order. Output the number of different strings as described above, modulo 1000003 .

Example

Input:
3
23
231
Output:

