4TH TUTORIAL ON RANDOMIZED ALGORITHMS

Eigenvalues and Chernoff bounds

1. Show that a connected d-regular graph is bipartite iff the least eigenvalue of its adjacency matrix is -d.

2. Give an example of *n* dependent random variables $X_i \in \{0, 1\}, i = 1, ..., n$ such that Chernoff bounds do not hold for $\sum_i X_i$.

3. Propose an algorithm to generate a random bipartite d-regular graph and argue that it is efficient.

4. Distinguishing coins. You are given two coins. One is fair and the other one has Pr[tails] = 1/4. We use the following algorithm to distinguish those:

- Pick a coin and toss it n times.
- Let \hat{p} be the probability of getting a tails (number of tails over n).
- If $\hat{p} \ge 3/8$ we say this coin is fair.

Show that if $n \ge 32 \ln(2/\delta)$ then our algorithm answers correctly with probability at least $1 - \delta$.

- 5. Simulating a fair coin using a biased coin and vice versa.
- a) We are given a fair coin $\Pr[tails] = 0.5$. Show how to generate a random bit with $\Pr[1] = p$ for a given $p \in (0, 1)$ (both p = 0 and p = 1 are a bit boring).
 - i) First, assume that $p = k/2^{\ell}$ for some integers k and ℓ .
 - ii) What about any rational p? What about irrational p?
- b) We are given a biased coin we do not even know $p = \Pr[tails]$. We are sure that $\Pr[tails] \in (0, 1)$. Generate a fair coin toss.