
Charles University in Prague

Faculty of Mathematics and Physics
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Abstract

Tzaar is an abstract strategy two-player game, which has recently gained pop-
ularity in the gaming community and has won several awards. There are some
properties, most notably the high branching factor, that make Tzaar hard for
computers. We developed Waltz, a strong Tzaar-playing program, using en-
hanced variants of Alpha-beta and Proof-number Search based algorithms. After
many tests with computer opponents and a year of deployment on a popular
board-gaming portal, we conclude that Waltz can defeat all available computer
programs and even strong human players. In this thesis we describe Waltz and
its performance. Also, as a general contribution, we propose some enhancements
of Alpha-beta and Proof-number Search, that can be useful in other domains
than Tzaar.

This work originated as author’s bachelor thesis and continued as a paper
written with Tomáš Valla and submitted to the 8th international conference on
Computer and Games (CG2013).
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Introduction

From the beginning of the computer era people are working on game playing
programs. The first challenge was to create a program that can win against the
top human in Chess. In 1996 Garry Kasparov, being currently the best Chess
player, lost a game against the computer Deep Blue, but still won the whole
match consisting of six games. Nowadays the best computer programs for Chess
are much stronger than the best people.

In the meantime, algorithms in Chess programs were adapted to other games.
They were not always successful against professional players, for example in the
game Go, best human players are still much better than any program. For these
games new algorithms were invented and the progress in this field is still going
on.

Tzaar is a relatively new game, that was invented by Kris Burm and published
in 2007. It is a part of the Project GIPF, a set of six abstract strategy two-player
games on a hexagonal grid (not always the same). Some computer programs for
Tzaar are available, but nobody has done a research on the game properties of
Tzaar and on algorithms appropriate for Tzaar (up to my best knowledge). The
game GIPF, the first in the Project GIPF, has already been studied, see [25].

Several properties, most notably the high branching factor (see Section 1.4),
make Tzaar a hard game to play for computers. Therefore, together with the
Tzaar popularity, writing a strong Tzaar playing program is a challenge. We
address this challenge by developing Waltz,1 a strong program able to defeat all
other Tzaar programs that we are aware of, and also—which is more important—
match up with and defeat even strong human players.

We have installed several playable “robots” on the popular board-gaming
portal Boitejeaux.net [28], where some very strong players are playing. The
details about Waltz performance against both computer and human opponents
can be found in Chapter 4.

The algorithms employed in Waltz are based on Alpha-beta pruning and
Proof-number Search (PNS), together with many enhancements, see Chapter 3.2
for more details. Both algorithms work on a game tree in which every node
corresponds to a position and the root node is the position for which we want to
find the best move. A node N is a son of a node P if and only if there is a move
from the position in the node P to the position corresponding to the node N .
Note that one position can be more than once in the tree.

We chose and tuned these algorithms and their enhancements after numerous
statistical experiments and play-outs with other Tzaar playing programs, humans,
and different versions of Waltz.

We also propose these new enhancements: Randomized Alpha-beta, Heuristic
Weak PNS, and Alpha-beta and Depth-first PNS for lost positions (see Sections
2.1.3, 2.2.5 and 2.3), which we consider to be a general contribution of this thesis.

The thesis is organized as follows. In the first chapter we present the game
Tzaar together with its properties, strategies and existing programs for playing
Tzaar against an artificial intelligence. Chapter 2 covers appropriate algorithms
for Tzaar in general way, namely Alpha-beta and Proof-number Search with their

1The name stands for the recursive acronym Waltz ALgorithmic TZaar.
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enhancements. The next chapter describes their implementation in the domain of
Tzaar with details of Tzaar specific heuristics. In the fourth chapter we test the
algorithms experimentally and show how enhancements and parameters of the
algorithms help making the search quicker, and how is Waltz successful against
other programs and more importantly against people.

The source code of Waltz, the thesis, and other information can be down-
loaded from our website [23].
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1. Tzaar Game

In this chapter we introduce rules of the game Tzaar and discuss its game prop-
erties. Popularity of Tzaar and some strategic notes on playing are mentioned.
We also take a look at other programs for playing Tzaar against an artificial
intelligence.

1.1 Tzaar Rules

Tzaar is a modern abstract strategy two-player game, bearing a distant similarity
to Checkers in some sense. Abstract means that the game does not have a theme.
It also has full information, i.e., both players know all information about the
current position in the game, and there is no randomness. White player and
black player take turns, white has the first turn.

The board for Tzaar is hexagonal and consists of 30 lines that makes 60 in-
tersections. There is a missing intersection in the center of the board. In the
starting position there are 30 white and 30 black pieces. Each color has pieces of
three types: 6 are Tzaars, 9 are Tzarras and 15 are Totts. The pieces lie on the
intersections of the lines. See Fig. 1.1 for illustration.

Tzaar Tzarra Tott Tzaar Tzarra Tott

Figure 1.1: Tzaar pieces

The starting position has one piece at each intersection. The placement could
be random or players can use a fixed starting position which is defined in the
official rules [10] and shown in Figure 1.2.

Pieces can form stacks, that means, towers of pieces of the same color. In the
beginning, all stacks on the board have height one. A stack is one entity, thus it
cannot be divided into two stacks.

Each player’s turn consists of two moves. There is an exception in the very
first turn of the white player, as his turn consists only of the first move. The first
move of each turn must be a capture. The player on turn moves one of his stacks
along a line to an intersection with an opponent’s stack. A stack cannot jump
over other stacks and over the center of the board, only a jump over arbitrary
number of empty intersections is allowed. No stack may end the jump on an
empty intersection. Captured stack must have height at most the height of the
capturing stack. Captured pieces leave the board.

The second move of a turn can be another capture move, or a stacking move,
or a pass move. Passing means that the player on turn does not move with any
stack, so nothing changes and the other player is on turn. During the stacking
move the player jumps with his stack on some other stack of his color. The height
of the resulting stack is the sum of both stacks heights. The type of the resulting
stack is the same as the type of the stack which jumped, i.e., the type of the
resulting stack is determined by the piece on the top, There is no restriction on
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A1 B1 C1 D1 E1 F1 G1 H1 I1

A5 B6 C7 D8 E8 F8 G7 H6 I5

Figure 1.2: Fixed starting position

heights and types of stacks which can do a stack move, for example a Tzaar stack
with height 1 can jump on a Tott stack with height 8.

A player loses when the last stack of one of the three types is captured, or if
he cannot capture in the first move of his turn. However he can make his last
possible capture and then pass or stack. Only visible pieces, i.e., pieces on the
top of stacks, count for the presence of three types.

A draw is not possible in Tzaar. Quite surprisingly, according to the rules,
a player can “commit suicide” (lose) by stacking his piece on the last stack of a
piece type.

Tournament version of the game begins with an empty board. The players
take turns in which they put a piece on an empty intersection on the board. The
order of placing the pieces is arbitrary. After putting all pieces on the board,
all intersections are occupied and the game starts like an usual game. In this
thesis we deal only with games without this placement phase, i.e., not int the
tournament version. The reasons are that the tournament version cannot be
played on board-gaming portals like Boiteajeux.net [28], or BoardSpace.net [3]
and that I was not able to think up a strategy, or evaluation function for Waltz
that is not random.

1.2 Tzaar History

Tzaar, originally written as TZAAR, is a relatively new game. It was invented
by Kris Burm and published in 2007. It is a part of the Project GIPF, a set of six
abstract strategy two-player games. Tzaar replaced TAMSK, the second game of
the project, and no other game was added to the project after Tzaar, since it has
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A1 B1 C1 D1 E1 F1 G1 H1 I1

A5 B6 C7 D8 E8 F8 G7 H6 I5

2

4

5

Figure 1.3: The Tzaar board with a sample position. The possible moves of the
black Tzaar stack in the second move of a turn are marked by arrows, the dashed
arrows represent stacking moves and the numbers denote the stack heights greater
than one.

now six games as Kris Burm intended.

Despite being so young, Tzaar has won quite a lot of awards, most notably the
Games Magazine’s award “Game of the Year 2009” [29]. In 2008 it has been hon-
oured “Spiel des Jahres” Recommendation [30] and earned nominated to “2008
International Gamers Award – General Strategy: Two-players” [2], “2008 Gold-
en Geek Best 2-Player Board Game Nominee” [1] and “Nederlandse Spellenprijs
2008” [5].

Tzaar is also highly rated by the gaming community, for example on the pop-
ular server BoardGameGeek.com it has the second highest rating among abstract
games (more than 1 300 users have voted up to March 31, 2013) [6].

1.3 Strategies

In this section we discuss some strategies how to play Tzaar. The strategies are
based on playing with human and computer opponents (also other than Waltz)
and there are some positions where they do not hold. The official Tzaar page has
some strategy tips too [11].

In the second move of a turn a player has three possibilities: capture, stack,
or pass. In most situations the stacking is the most reasonable, because it makes
one of stacks more powerful and more safe against opponent’s stacks. The other
reason is that the opponent loses capturing possibilities, thus it is more likely
that he will run out of captures and lose in the endgame.

7



Capturing again (so called double capture move) is appropriate if the opponent
is running out of pieces of a type (he should not have a high stack of that type),
or if a high stack can be captured. Height of a double captured stack had better
be more than two, because by capturing stacks of size two, one can lose capturing
possibilities. More importantly, double capturing two pieces with height only one
leads mostly to to a loss because of no capturing possibilities.

Passing move occur only rarely during a game. It is worth doing only in the
endgame when stacking is not possible, or would result in a loss. See Figure 1.3
for an example of such a position.

A1 B1 C1 D1 E1 F1 G1 H1 I1

A5 B6 C7 D8 E8 F8 G7 H6 I5

2

2

2

6

9

3

4

2

Figure 1.4: In this position, black player is on turn. After the last black Tzaar
stack captures white Tzaar piece in the right corner, the only move not leading
to a loss for black is the pass move.

We may also observe that black player has a little advantage, because he is
stacking first. Hence he can often threaten his opponent by chasing his stacks.

The first move is always a capture move, but it often depends which type of
piece is captured. It is mostly the best to capture a type of piece which from
that the opponent does not have a high stack, and secondarily from which there
are not many stacks. In a typical game a player starts creating a stack of Tzaar,
thus it is probably convenient to capture Tzarras.

There are generally two strategies how to stack. The first is creating one high
stack that is powerful and that can capture all opponent’s stacks or that forces
opponent to raise his highest stack (when a player has a little lower stack than his
opponent). The second strategy is based on creating more lower stacks, mostly
of size two, but it is safer when some of them have height at least three.

It is not known to me which strategy is better, probably the first for black
player and the second for white player. With the first strategy a player can quite
easily threaten or even capture small opponent’s stacks, but with the second it
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is sometimes impossible for the opponent to create a new stack (it would be
captured immediately) and the opponent can lose because of it. The second
strategy is more reasonable in the endgame, since it decreases the opponent’s
capturing possibilities. Having a stack much higher than all other opponent’s
stacks is only a little advantageous in the endgame.

These strategy observations were mostly about material; now we discuss some
positional strategy features. One important positional advantage is that high
stacks can move easily to any direction and thus they threaten large part of the
board. We can conclude that it is better to have high stacks in the middle of the
board, not on the border. Moreover from the middle of the board a stack can
nearly always escape from a threat by a higher stack. The worst position is in
one of the six corners. It is also good to limit possibilities to move for opponent’s
high stacks.

When a stack is isolated, i.e., it cannot be captured and it cannot capture
or stack (there are no other pieces on the same lines as the isolated stack), the
type of that piece is safe. Hence the player cannot run out of it which is a great
advantage. But isolating a high stack is not good, because the stack cannot be
used for capturing opponent’s stacks.

As the game is coming to the end it is useful for a player to limit opponent’s
possibilities of captures and also prepare own capture possibilities. Most impor-
tantly, limiting moving possibilities of an opponent’s high stack is advantageous.

Moving pieces (stacks of height one) from the middle of the board is less
important and useful only before the endgame—otherwise the opponent can jump
through them and maybe double-capture a high stack.

1.4 Game Properties of Tzaar

Before creating a computer AI for playing Tzaar, it is convenient to know game
properties. According to Heule and Rothkrantz [14], and Allis [7], we try to
estimate the state space and game tree complexity of Tzaar. Then we show some
other properties of Tzaar, e.g., branching factor in different parts of the game,
the number of starting positions, and the number of positions in the endgame
with a fixed number of stacks.

First we count the maximum height of a stack. Observe that before a stacking
move creating a stack of height h, the opponent must have captured at least
h − 1 pieces (at least one capture before stacking to height two). There should
be two pieces of another types present and there are 30 pieces of each color, so
the maximum stack height is 14 because of 13 captures before stacking to the
height 14 and two other pieces visible.

The state space complexity is the number of game positions reachable from
any starting position. We bound it from above by the sum of the number of
positions with a fixed number of stacks on the board. There are

(
60
v

)
different

choices of fields for stacks, where v is the number of free fields on the board Let
k be the sum of heights of all white stacks on the board, and analogously ` for
the black color. Let there be s white stacks, so the number of black stacks is
60− v− s. Then k is bounded by the number of necessary captures before v free
fields are on the board.
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The number of different stack heights for s stacks with k white pieces is
(
k−1
s−1

)
;

the number of different choices of fields for white pieces is
(
60−v
s

)
and 3s is the

number of different types of white stacks. Similar formulas holds for black player.
We note that two positions that differ only in types of pieces inside stacks (not on
the top) are equivalent. This gives us the upper bound on the number of possible
states:

55∑
v=1

(
60

v

) 30−b 1
4
vc∑

k=2

min(k,58−v)∑
s=2

(
60− v
s

)(
k − 1

s− 1

)
3s ·

30−b 1
4
vc∑

`=60−v−s

(
`− 1

59− v − s

)
360−s−v

.
= 9.17 · 1057

Let us now take symmetries into account. The position can have 6 equivalent
rotations. The position may also have 6 isomorphic mirrors by 6 axes (between
opposite corners of the board and between centers of opposite sides). Mirroring
twice by any two axes results in a rotated position, thus there are 12 isomorphic
positions. This decreases the upper bound of the state space complexity to 7.64 ·
1056. (we divided the value by 12 simply, because using Burnside’s Lemma does
not change at least the first 10 digits).

We can observe that this is the number of positions which can be reached from
all starting positions altogether, but some positions (and maybe most of them)
can be obtained from more than one initial position. Note that positions in the
placement phase of the tournament version are already counted.

The game tree complexity is defined as the number of leaf nodes in the mini-
mum solution tree of the initial position(s), which is usually roughly counted as
the average branching factor (according to the depth) to the power of the average
game length in turns. Since pass moves are played rarely we can estimate that
in every turn of a player, except for the first turn of white player, two stacks
disappear from the board —one captured and one captured, or stacked. There
should be at least 5 stacks in the final position, thus the upper bound on the
number of turns in a game in which players do not pass is 28.

The branching factor, i.e., the number of possibilities how a player can play
in one turn, depends on the starting position. The fixed starting position has the
maximum branching factor around 5 500, but there are starting positions with the
branching factor up to 10 000. We count positions reachable by two possible ways
only once, otherwise the branching factor can be 14 000. During the game, the
branching factor is decreasing as the pieces are captured or stacked. Table 1.1
provides a summary of the minimum, maximum and average branching factor
according to the number of stacks on the board, computed statistically from real
play-outs.

The game tree complexity is usually estimated by multiplying the average
branching factor for each turn. For Tzaar we get approximately 1079.

In the tournament version of the game, the search tree is even much more
larger because of the placement phase. The first player has 60 possibilities where
to put his first piece, the second player has 59 possibilities, the first then has 58
. . . Thus the game tree of the placement phase has 60! leaves (without taking
symmetries into account) and the game tree complexity of the tournament version
of the game is 60! · 1079 .

= 10161.
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Stacks 59 55 49 43 37 31 25 19 13 9 7 6
Positions 470 464 456 460 446 427 399 338 170 61 15 7
Min 4961 3962 2732 1732 906 403 139 35 1 1 1 1
Max 9933 7651 6007 4235 2986 2078 1073 476 114 21 4 2
Avg 7497 5965 4463 2971 1978 1117 562 203 37 7 1 1

Table 1.1: Minimum, maximum and average branching factor according to the
number of stacks on the board. The table contains also the number of positions
from which the values were obtained. We take positions reachable by two possible
ways only once. We sampled positions from real games at BAJ [28].
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Figure 1.5: Maximum (red), average (yellow) and minimum (blue) branching
factor according to the number of stacks on the board.

The number of different starting positions is the number of permutations with
repetitions:

60!

(15! · 9! · 6!)2
.
= 7.13 · 1040

There are again 12 symmetries which results in 5.94 · 1039 different starting
positions.

It is also handy to know the number of endgame positions. We count the
number of positions with six stacks of different types or colors—if there are two
pieces of the same color and type, the position is won by one of players. We
observe that the number of positions with more than six stacks is higher. The
number of positions with exactly six stacks is the number of different choices of
six fields on the board multiplied by the number of permutations of six stacks and
the number of different stack sizes for each piece type and for each player. The
maximum sum of stack sizes for a player is 16, because there should be a capture
before each stacking. These observations give us the following formula:
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(
60

6

)
· 6! ·

(
16∑
i=3

(
i− 1

2

))2

= 1.13 · 1016

where i is the sum of stack heights for one player.
After taking symmetries into account, we get 9.42 · 1014 different positions

with six different stacks.

1.5 Existing Tzaar Programs with Artificial In-

telligence

Up to March 2013 there are several Tzaar programs with an artificial intelligence
(AI) available on the Internet: HsTZAAR [24], TZ1 [21], students’ and teacher’s
works at the Department of Mathematical Sciences at the University of Alaska [31]
and robots on BoardSpace.net [3].

The HsTZAAR program [24] published as an open source project is created
in Haskell. It is developed from the older program htzaar. It offers graphical
interface and saving and loading games. There are four levels of an AI opponent.
The second best plays quite reasonable moves. The best AI opponent is very
slow (in the beginning of a game it thinks more than a few minutes in each move
depending on the hardware). The first two levels are very quick, but still they
play reasonable moves.

TZ1 [21] is written in Java and also has a graphical interface. The AI opponent
plays very bad moves and can be beaten by intermediate players easily.

There are four available students’ and teacher’s works on University of Alas-
ka’s site [31]: Mockinator, Mockinator++ (improved Mockinator), BiTzaarBot
(with algorithm inspired by the Monte-Carlo Tree Search) and GreensteinTzaarAI.
They are able to connect to the Daedalus Game Manager [4] which has graphic
user interface for Tzaar and which maintain games between programs. Green-
steinTzaarAI won a tournament between these programs [31].

Robots on BoardSpace.net [3] run under Java. The Dumbot is the weakest
robot there, but Smartbot and Bestbot also do not play well and experienced
players are able to win against them nearly every time. They even do not stack
the first time they can. Additionally Bestbot can think in some positions for
more than half an hour (depending on the hardware).

For a comparison between these programs and Waltz see Section 4.2.2. We
note that it is not possible for us to test Waltz against BoardSpace.net robots
and TZ1 automatically.
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2. Search Algorithms for Board
Games

This chapter describes existing algorithms for searching for the best move in two-
player strategic games without randomness and with a complete information,
for example, Chess, Go, or Tzaar. In these games, one theoretical method for
searching for the best move is generating the whole game tree for a given position.
We want to find a winning strategy, that is, a move resulting in a position from
which all opponent’s moves leads to a winning position for us, i.e., for each such
position there exists our move leading to a position from which all opponent’s
moves lead to a winning position for us—with recursively the same definition.

This strategy can be found, if there is any, by the Minimax algorithm that we
describe in Section 2.1.1. Searching the whole game tree would result in the best
possible play in winning positions (the move leading to a win would be always
found), but the problem is that game trees for most board games including Chess,
Go and Tzaar are too large to be searched completely in a reasonable time. Only
a very small part of the game tree can be searched within a given time, that is,
up to several minutes.

We describe basically two different algorithms, Alpha-beta and Proof-number
Search, together with some of their enhancements. Note that there are other
algorithms, like Dependency-based search [7] and Lambda search [22], but they
are not suitable in the domain of Tzaar as shown in Section 3.2. Monte Carlo
Tree Search [8, 17] may be a good choice for Tzaar, but it was not tried.

2.1 Alpha-beta Algorithm

Alpha-beta algorithm is an extension of the Minimax algorithm by pruning non
perspective branches of the game tree, so we describe Minimax first and then
the Alpha-beta pruning. There are many enhancements for Alpha-beta, most of
them are for making pruning as effective as possible. We describe only the most
common and appropriate for Tzaar.

2.1.1 Minimax

The base of the Minimax algorithm is a depth-first search on the game tree in
which the root node is the position for which we want to find the best move.
Because of a time limit the tree is searched only to a given depth. The searched
part of the game tree is called the search tree.

A value is assigned to each node in the search tree and the node evaluation
is done recursively. 1 There are two players which we name Max and Min and
let Max be on turn in the root position of the tree. Max wants the value of his
nodes to be as high as possible and Min as low as possible.

Leaves are evaluated directly, final positions in which the game ends obtain
+∞ if won by Max, −∞ if won by Min, and zero in the case of a tie. Other leaf

1We sometimes use a value of a move that means simply a value of the position after
executing the move.
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positions have value counted by a heuristic evaluation function that returns value
higher than zero in positions better for Max player, approximately 0 in balanced
positions and less than zero in positions in which Min has an advantage. It should
hold that the better the position for Max, the higher the value is and vice versa
for Min. Our evaluation function for Tzaar is described in Section 3.5.

Nodes inside the tree including the root node count the value from values
of their sons in the tree. When Max is on turn, a node obtains the maximum
of values of his sons, for Min it is the minimum. The best move from the root
position leads to the son that has the same value as the root.

Pseudocode of Minimax is in Algorithm 1. The function returns the best
possible value and move for the player on turn. Note that ∞ is a constant that
should be more than any value which the evaluation function can return.

Algorithm 1 Minimax algorithm

1: function minimax(position, depth, onTurn)
2: if depth = 0 or endOfGame(position) then . leaf node
3: return (evaluate(position), emptyMove)
4: end if
5: if onTurn = Max then
6: bestV alue← −∞− 1
7: bestMove← emptyMove . Try all moves of player Max
8: for all m in generateMoves(position, Max) do:
9: (value, move)← minimax(executeMove(m), depth− 1, Min)

10: if value > bestV alue then
11: bestV alue← value
12: bestMove← m
13: end if
14: end for
15: return (bestV alue, bestMove)
16: end if
17: if onTurn = Min then
18: bestV alue←∞+ 1
19: bestMove← emptyMove . Try all moves of player Min
20: for all m in generateMoves(position, Min) do:
21: (value, move)← minimax(executeMove(m), depth− 1, Max)
22: if value < bestV alue then
23: bestV alue← value
24: bestMove← m
25: end if
26: end for
27: return (bestV alue, bestMove)
28: end if
29: end function

In this Minimax implementation, there should be two different formulas for
counting the value in each internal node, one for each player. To have only one
formula, Negamax adjustment is used. A player on turn is always Max, i.e., the
evaluation function returns high values when the player on turn has an advantage.
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Max

Min

Max 42 5 -8 ?

5 B

A

Figure 2.1: Example of a search tree. The position ? need not to be searched,
since the position B has value at most −8 and thus the root position have value 5.

The maximum of values of sons is always counted. The value is multiplied by −1
between search tree levels.

The time complexity of this algorithm is O(bd) where b is the average branch-
ing factor and d is the search depth. The space complexity is O(d) because of
a stack for remembering nodes on the path to leaves.

2.1.2 Alpha-beta Pruning

The Alpha-beta pruning (or the Alpha-beta algorithm) is an important improve-
ment of the Minimax algorithm. It is based on the observation that mostly not
all nodes have to be searched to obtain a value of the root position. For example
see a search tree in Figure 2.1.

This observation can be generalized. While searching the tree we remember
variables alpha, the best achievable value for the player Max, and beta, the best
achievable value for Min. The best achievable means that whatever opponent’s
moves are, the value is guaranteed—it can be better for the player, but not worse.
At the beginning alpha is −∞ (Max can lose the game) and beta is +∞ (Min
can lose too).

In the position where Max is on turn, variable alpha is updated and if it
exceeds beta, searching the subtree of the node is interrupted. This interruption
is called a cutoff. The similar with alpha and beta swapped holds for positions of
Min. Thus alpha is always strictly less than beta.

In Algorithm 2 we present a pseudocode of Alpha-beta pruning together with
Negamax adjusted—we count always maximum, values are multiplied by −1 be-
tween levels, and alpha and beta are swapped. Note that the function is returning
only the value, but not the best move for simplicity.

The worst-case complexity of Alpha-beta is the same as for Minimax—when
nodes are examined from the worst to the best. But if they are searched from
the best to the worst, pruning is done as much as possible and in every second
level of the search tree (odd, or even depending on who has the advantage) only
one move has to be examined. Hence the time complexity of the algorithm is
O(bd) and Ω(bd/2). For more elaborated analysis of the algorithm and proof of
its correctness see the article of Knuth and Moore [16].

Next we propose a new function for choosing randomly a move that is only
a little worse than the best move. Then some enhancements for the Alpha-beta
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Algorithm 2 Alpha-beta algorithm

1: function alphaBeta(position, depth, onTurn, alpha, beta)
2: if depth = 0 or endOfGame(position) then . leaf node
3: return evaluate(position)
4: end if
5: bestV alue← −∞− 1
6: for all m in generateMoves(position, onTurn) do: . Try all moves
7: value← − alphaBeta(executeMove(m), depth−1, opponent(onTurn),
−beta, −alpha)

8: if value > bestV alue then
9: bestV alue← value

10: end if
11: if value > alpha then
12: alpha← value
13: end if
14: if alpha ≥ beta then . Pruning (cutoff)
15: break
16: end if
17: end for
18: return bestV alue
19: end function

algorithm are presented. See Section 4.1.1 how the enhancements have effect on
the duration of the search in the domain of Tzaar.

2.1.3 Randomized Alpha-beta

When the computer plays many times without randomness, regularly repeating
patterns in its strategy can be observed and exploited by the opponent. Hence
a randomized strategy is needed. On the other hand, randomization should not
result in silly moves. The goal is to choose a move with a value not far from the
value of the best move, i.e., with a value at least bestValue −margin for a given
constant margin. We call such moves good-enough. We propose an algorithm for
finding all good-enough moves using a modification of Alpha-beta.

The search differs from Alpha-beta in the root node, for other nodes the
deterministic Alpha-beta is executed. For the recursive call of Alpha-beta we
have to set beta := −bestValue + margin + 1 instead of −bestValue, otherwise
false good-enough moves may be found. The reason is as follows. Suppose that
the best move is searched first and there are some other good enough moves.
While searching these moves in the second level of the tree from the root, alpha
is bestMoveV alue (best value that Max can achieve) and beta is updated. For
example it can happen that beta changes to bestMoveV alue−5 and the search in
this node is pruned, so move is considered to be good enough, but the real value
of the move is bestMoveV alue− 100 and the move is in fact not good enough.

In the root node we collect all moves together with their value into a list. After
searching all moves, the list is filtered to contain only good enough moves. Among
these nodes the result is chosen randomly uniformly. This leads to Algorithm 3
executed for the root node. For clarity Alpha-beta is now not in the Negamax
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form. Note that parameters alpha and beta are useless in the root node, so we
omit them. One can add a break to the function when a winning move is found.

Algorithm 3 Randomized Alpha-beta algorithm

1: function RandomizedAlphaBeta(position, depth, onTurn)
2: bestValue ← −∞
3: allMoves ← ∅
4: for all m in generateMoves(position, onTurn) do:
5: value ← − alphaBeta(executeMove(m), depth − 1,

opponent(onTurn),−∞,−bestValue + margin + 1) . Note a change in beta
6: Add (m, value) to the list allMoves
7: if value > bestValue then
8: bestValue ← value
9: end if

10: end for
11: goodEnough ← select moves with value ≥ bestValue − margin from

allMoves
12: return uniformly random move from goodEnough
13: end function

Up to my knowledge nobody has done choosing random moves using Alpha-
beta in this way, so this algorithm for choosing random moves via the Alpha-beta
search is a contribution of this thesis.

2.1.4 Iterative Deepening

Iterative deepening (ID) is simply running the Alpha-beta algorithm first to depth
1, then to depth 2, 3, . . . Searching one turn of a player deeper lasts in most
games much more than the previous search, so the deepest search takes nearly
the whole time of all searches, hence ID does not slow down the search. It is used
to estimate how deep can Waltz search within a time limit. The implementation
of this estimation for Tzaar is briefly described in Section 3.4.

2.1.5 Transposition Table

Transposition table (TT) is in fact a hash table for storing information about
positions. In many games it happens quite often that two positions can be reached
by two different move sequences. In these cases storing some information about
searched positions comes in handy.

There are some differences between the Transposition Table and a usual hash
table. Since the whole position representation is large, we cannot store the posi-
tion in TT. Instead of it we generate a big enough hash value for the position (64
bits are mostly sufficient) and only a part of the hash value is used as an index in
the table, i.e., the position in the array in which TT is stored. Thus it is useful
to have the size of TT 2k for a constant k.

Since the number of searched positions is very high (up to billions), there can
occur two types of collisions: two different positions obtain the same hash value—
this is called type-1 error—or two positions obtain the same index in TT—type-2
error.
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Type-1 error is a lot more critical than type-2 error, so the hash value range
should be very high and the hash function has to uniformly and randomly give
values to the positions. This error is rare for most games with a good hash
function and it is tested only by trying to play saved moves from TT in the
position. It is usually not tested in another way, since the test would consume
too much memory and would slow down the search.

Type-2 error occur quite often, because the size of TT is limited by the mem-
ory and usually does not exceed millions. This error can be found by comparing
the whole hash value stored in TT

The problem with type-2 error occurs when we want to save a position into
TT and there is another position saved on the index. If we just delete the position
that was on the index, we may rewrite a search result that was counted for a long
time by a result calculated quickly. Thus we use a replacement scheme Two big.
In this scheme we count how many positions were searched to obtain a value of
a position and store it to TT. On each index there are two positions in the table.
Newly inserted position to TT is always stored and when there are already two
positions under one index, we delete the one with fewer nodes searched to obtain
its value. For more replacements schemes and comparison of them in the domain
of Chess see [9].

In whole for each position we want to save to TT the hash value, the counted
value, the best move, the search depth and the number of nodes examined when
searching the position. The counted value can be one of three types: lower bound
when the value is lower than alpha, upper bound when the value is bigger than
beta (the search was pruned in the position), or exact value otherwise. The type
of the value is also saved.

When we want to search a position in depth d > 0, we first look into TT
whether it was searched to the sufficient depth. If so and the type of the value is
exact value, the position need not be searched. Otherwise it is searched and we
also update the bound alpha or beta when the type of the value is lower bound,
or upper bound, respectively. After searching a position we save the result into
TT, i.e., the value, the type of the value and the best move, together with some
information about the search.

The only theoretical thing left around TT is the hash function. For board
games Zobrist hashing [32] is usually used. For each possible combination of figure
and field on the board (including empty fields), a random value in the range of
hash values is generated. For example for Tzaar a random value is generated for
each combination of a stack type, color, height and a field. The hash value of
a position is xor of values of all combinations of a figure and a field on the board.
The advantage of the Zobrist hashing is that it can be counted incrementally,
i.e., after a move the value is changed by xor with what has disappeared from the
board and what has appeared.

2.1.6 Move Ordering

The crucial thing about Alpha-beta algorithm is to have moves in the order from
the best to the worst. Since we do not know which move is the best, we have to
try some heuristics.

The first and probably the most important heuristic comes from using the
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Iterative Deepening and the Transposition Table. Suppose we are not in the first
iteration of ID, then we have already searched internal nodes of the search tree
and stored for each of them the best move in the previous iteration of ID. The
best move can be changed in the next iteration, since we search the position
deeper, but we can use the stored move as the first. This heuristic is often called
the Hash Move (the move is stored in TT) or the Principal Variation Move (it
was the best in the previous iteration of ID).

If the search is not pruned by searching the Hash Move (if it exists), we have
to try another moves and we want to do it in a good order. One way how to do
it is generating moves already in a good order, the other way is first generate all
moves, assign them heuristic value and sort them according to the value. We use
the latter.

2.1.7 History Heuristic

The History Heuristic is a dynamic method for making the Move Ordering better.
It is based on counting how many times each move caused a cutoff (the search was
interrupted in the current node), e.g., by using quadratic array with one coordi-
nate as the source field of the move and the other coordinate as the destination
field. Moves which caused a cutoff many times should be tried before the other
moves, since they likely cause a cutoff again. One possible implementation is to
add the number of cutoffs to the heuristic value for sorting generated moves.

Another important heuristic in many Chess programs, called the Killer Move,
is trying a few moves that caused a cutoff in another nodes in the same depth of
the search tree. It is similar to the History Heuristic.

2.1.8 NegaScout

The NegaScout algorithm comes with a following idea. We restrict ourselves, set
alpha close to beta and try to search a move. If we still obtain a value at most
alpha, or at least beta (thus a cutoff in the second case), we do not need to search
the move again without the restriction. Otherwise the re-search of the move is
needed.

The restriction is that we set beta temporarily to alpha + 1. Since the range
between alpha and beta is called window, this restriction is called null window (the
window is as narrow as possible). We can observe that the search with the null
window is often much quicker that with the full window, i.e., without restrictions.
The whole NegaScout algorithm is more effective than Alpha-beta (effectiveness
means number of nodes examined), but relies on a good Move Ordering. The
proof of its correctness can be found in [19].

Algorithm 4 shows the pseudocode of the NegaScout.

2.1.9 Quiescence Search

Alpha-beta stands on a good leaf evaluation. Since the evaluation should be
quick, it can often happen that a leaf obtain a high value, but the value change
dramatically with the next move (which is not examined). This problem is called
horizon effect.
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Algorithm 4 NegaScout algorithm

1: function negaScout(position, depth, onTurn, alpha, beta)
2: if depth = 0 or endOfGame(position) then . leaf node
3: return evaluate(position)
4: end if
5: bestV alue← −∞− 1
6: beta2← β . Full window for the first move
7: for all m in generateMoves(position, onTurn) do: . Try all moves
8: value← -negaScout(executeMove(m), depth− 1, opponent(onTurn),
−beta2, −alpha) . Null window search

9: if value > alpha and value < beta and m is not the first move then
10: value← -negaScout(executeMove(m), depth− 1,

opponent(onTurn), −beta, −alpha) . Full window re-search
11: end if
12: if value > bestV alue then
13: bestV alue← value
14: end if
15: if value > alpha then
16: alpha← value
17: end if
18: if alpha ≥ beta then . Pruning (cutoff)
19: break
20: end if
21: beta2← α + 1 . Update beta2
22: end for
23: return bestV alue
24: end function

To resolve the problem, Quiescence Search is used. In every leaf a restricted
search is run and the restriction is that we use only moves which can change
value dramatically, like capturing a high stack in Tzaar. The leaves of the search
tree are quiet, i.e., there is no move that changes the value much. For more
information see e.g. [20].

2.2 Proof-number Search

Proof-number Search (PNS) is a best first search algorithm for finding the winning
strategy in game trees developed by Allis [7]. In a sufficient time and memory
it can decide whether a given position is winning for us, or for our opponent
(supposing we are on turn). Ties can be viewed as a loss for us. For simplicity and
their non-existence in Tzaar we do not mention ties in the following description.

During the search we have a part of the game tree stored in the memory, we
call this part an expanded tree. A node in the tree can have three values: true if
it is won for us, false if it is won for the opponent and unknown otherwise. The
tree is viewed as an AND/OR tree, i.e., an internal node is OR when we are on
turn, or AND when our opponent is on turn and the root node is an OR node.
OR means that we can choose any move leading to a win, but in opponent’s AND
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Or node:

And node:

PN DN

PN DN

1 1 5 8 2 4 3 2

6 1 10 1 5 2

5 4

Figure 2.2: Example of a part of an AND/OR tree with proof and disproof num-
bers. Circles denote AND nodes and squares denote OR nodes. The highlighted
OR node is the most proving node in this tree.

nodes we must examine all his moves to be sure the node is winning for us. Note
that the algorithm in general works also on arbitrary AND/OR trees [7], but we
deal only with game trees.

We want to find a proof in the tree that corresponds to a winning strategy for
us, or disproof when there is no winning strategy. The tree can also be viewed as
a very huge formula for which we want to decide whether it is true or not.

The main idea of the algorithm is to look for the shortest proof and disproof
simultaneously. We store a proof number and a disproof number for each node in
the expanded tree. The proof number (PN) of a node N is the minimum number
of nodes that we have to prove to obtain the value true in the node N . The
disproof number (DN) is similarly the number of nodes we have to disproof to
have the value false in the node N .

In leaves of the tree, nodes obtain proof and disproof numbers straightfor-
wardly: PN is 0 and DN is∞ for a leaf with value true (no node has to be proved
to prove the node, and the node cannot be disproved), PN is ∞ and DN is 0 for
a false leaf and both PN and DN are one for an unknown leaf.

For an internal OR node, PN is minimum of PNs of its children, since we
can choose where to move to win, and DN is the sum of its children. When we
sum DNs and there is ∞ between the children, the resulting DN is also ∞. For
an internal AND node the computation is done vice versa: PN is the sum of
children’s PNs and DN is the minimum of children’s DNs. We can see that an
OR node has the value true if and only if PN is 0 and DN is ∞, and vice versa
holds for an AND node. For an example see Figure 2.2.

The PNS algorithm can be basically described by a loop done until a root
node has the value unknown. In the loop, three steps are executed:

1. find an unknown leaf node and expand it, i.e., add all its children to the
expanded tree,

2. assign values unknown, or true, or false to the children,

3. update proof and disproof numbers in the tree.

The second step is obvious to implement and the third step is done by updating
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PNs and DNs on the path from the expanded node to the root node (in this order)
as PNs and DNs of the other nodes were not changed.

The choice of a node to expand is done according to the searching for the
shortest proof and disproof. We want to find a leaf node for which it holds that
proving it decrements PN and disproving it decrements DN of the root node.
Such a node is called the most proving node (MPN). We select it by walking
on a path from the root until we get to a leaf and find MPN. In OR nodes we
continue to a child with the lowest PN, in AND nodes we go to a child with the
lowest DN. For an explanation of such a selection see [7].

Note that the algorithm runs the best on trees which are not uniform, for
example when one player repeatedly threats the other player who has only a few
possible moves that do not lead to a quick loss. So the algorithm often finds
a winning strategy that is in fact a long sequence of threats and the length of
the strategy in moves may be far bigger than the length of the shortest winning
strategy.

The algorithm can be simplified in a way similar to the Negamax algorithm.
Let all nodes be OR and the only thing we have to do is swapping PN and DN
between tree levels. See a pseudocode of the Depth-first Proof-number Search in
Algorithm 5.

The main disadvantage of this algorithm is that it has the whole search tree
in the memory. Many improvements that have lower memory requirements were
invented, see [13] for a survey. We describe an adjustment of PNS that is up to
my knowledge the most used nowadays.

2.2.1 Depth-first Proof-number Search

Depth-first Proof-number Search (DFPNS) is PNS adjusted to the depth-first
search and can be implemented using one recursive function. In the memory we
store only the path from the root to the current MPN, the other nodes already
searched are in the Transposition Table (TT) similar to the one used in Alpha-
beta. Note that nodes in TT can be also deleted in the case of a collision.

We also postpone the update of PN and DN of nodes upper in the search tree
while MPN is still in their subtree. We do it by using thresholds on PN and DN.
When the search selects a child, it sets the thresholds such that when PN or DN
is at least the corresponding threshold, MPN is not in the child’s subtree.

We show a formula for counting the thresholds for a child of an OR node. Let
tpn and tdn be thresholds on PN and DN of the current OR node, dn1 be DN of
the child with the lowest PN between children, pn2 be the second lowest PN and
sumDN be the sum of all children’s DNs. Then the new threshold on PN is the
minimum of tpn and pn2 + 1 and the threshold on DN is tdn− sumDN + dn1.

Note that the child with the minimum PN has MPN in its subtree (or it is
already MPN), so the search goes to it. For an AND node the computation is
done vice versa. The thresholds for the root node are set to ∞.

The Transposition Table plays important role in this algorithm. When we
count non-trivially PN and DN of a node and MPN is not in the subtree of the
node, we store PN and DN for that node to TT. When we are searching between
children of a node (to count the minimum of PNs and the sum of DNs), we look
for child’s PN and DN first to TT, if the child is not a final position. If PN and
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DN for the node are not in TT, we set PN and DN to 1.
Algorithm 5 shows the pseudocode for DFPNS adjusted similarly to Negamax.
Note that there are some differences to the pseudocode of DFPNS in [12], e.g.,

we do not need to call function dfpns for final positions and we can cut off the
search immediately when we find a win.

We can also observe that DFPNS searches the tree in the same order as PNS
when TT is big enough and no node is deleted from it.

There are some properties of DFPNS that can be adjusted to get a more
effective algorithm. The first is the initialization of unknown leaves to more
appropriate numbers than one, the second is better setting the thresholds for the
selected child and the third is the way of counting disproof numbers in an OR
node.

Next we describe most of DFPNS enhancements that were invented—the oth-
ers are not so important for Tzaar, since they are dealing with problems not
occurring in Tzaar. We show computations only for OR nodes, because the pseu-
docode in Algorithm 5 is modified in the Negamax way, i.e., every node counts
PN and DN like an OR node, and one can change formulas for AND nodes
straightforwardly.

We note that there is another problem in some games called Graph History
Interaction (GHI). It occurs when the current state of a position depends on a few
or even all positions that were in the game recently. The problem makes use of
the Transposition Table harder. Since this is not the case of Tzaar, we do not
describe any method how to deal with GHI. For a solution see e.g. [15].

2.2.2 Evaluation Function Based PNS

Evaluation Function Based PNS is an enhancement based on the better initializa-
tion of unknown leaves. It was originally proposed by Schadd and Winands [26]
for PNS, but it can be easily added to DFPNS.

Since mostly more than one node has to be searched to determine the value,
we want to take into account the branching factor (or at least an estimate of it)
and also who has an advantage—that is estimated by the evaluation function.
We use a step function

step(value) =


1 if value ≥ t

0 if − t < value < t

−1 if value ≤ −t

where t is a threshold parameter corresponding to a value that indicates play-
er’s high advantage, i.e., the player is likely going to win. Using this function we
initialize the proof and disproof numbers for an AND leaf node with this formulas:

pn = m · (1 + b · (1− step(value))),

dn = 1 + a · (1 + step(value))

where m is number of moves from the child (or an estimate of it) and a, b
are parameters. Initialization for an OR leaf is done vice versa. (We present
initialization of an AND leaf, because the initialization is always used in an OR
node in the program.)
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Algorithm 5 DFPNS algorithm

1: procedure dfpns(node, onTurn, tpn, tdn)
2: minPN ←∞ . Minimal PN
3: dn1← 0 . DN of the child with the minimal PN
4: minPNnode← null . Node with the minimal PN
5: pn2←∞ . The second minimal PN
6: sumDN ← 0 . Sum of DNs
7: loop until break
8: for all m in generateMoves(node, onTurn) do . Try all moves
9: child← executeMove(m)

10: pn← 1 . Default values for unknown leaves
11: dn← 1
12: if endOfGame(node) then
13: if winner = onTurn then . Our win
14: addNodeToTT(node, 0, ∞) . PN is 0 and DN is ∞
15: return . No need to search anything else
16: else . We lose
17: pn←∞
18: dn← 0
19: end if
20: else
21: ttEntry ← lookupInTT(child)
22: if ttEntry 6= null then . Already searched node
23: pn← ttEntry.dn . Note swapping PN and DN
24: dn← ttEntry.pn
25: end if
26: end if
27: if sumDN <∞ then
28: sumDN ← sumDN + dn
29: end if
30: if pn < minPN then
31: pn2← minPN
32: minPN ← pn
33: dn1← dn
34: else if pn < pn2 then
35: pn2← pn
36: end if
37: end for
38: if minPN ≥ tpn or sumDN ≥ tdn then . Test thresholds
39: addNodeToTT(node, minPN , sumDN)
40: break
41: end if
42: ntpn← tdn− sumDN + dn1 . Swapping PN and DN again
43: ntdn← min(tpn, pn2 + 1)
44: dfpns(child, opponent(onTurn), ntpn, ntdn)
45: end loop
46: end procedure
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2.2.3 1 + ε Trick

The problem which leads to using the 1 + ε Trick is switching between subtrees
where the most proving node (MPN) is. The worst case is when two children of
an OR node have nearly the same proof numbers and their subtrees cannot be
stored in Transposition Table together. Then it can happen that proof numbers
of these children increase repeatedly only by one, making the algorithm to switch
between their subtrees very often and recalculate PNs and DNs of some nodes
many times. Lew and Pawlewicz [18] proposed following solution of the problem.

To decrease the number of switches between subtrees we change the setting
of the threshold on PN for a child of an OR node to the minimum of tpn and
pn2 · (1 + ε) + 1 for a constant ε > 0. The same formula with disproof numbers
instead of proof numbers is used in AND nodes.

2.2.4 Weak PNS

As the positions often occur more than once in the game, the state space is
described by a directed acyclic graph instead of a tree. Then DFPNS suffers
from the double-counting problem, when the proof number of a position contains
the proof number of another position more than once.

The problem can be resolved by modifying the summation of disproof numbers
in OR nodes and proof numbers in AND nodes. Weak PNS [12] proposes taking
the maximum disproof number and adding the number of children minus one.
Another solution to this problem is described by Kishimoto [15].

2.2.5 Heuristic Weak PNS

We propose a new enhancement based on Weak PNS and the evaluation function.
We modify counting disproof numbers in OR nodes in a way similar to Evalu-
ation Function Based PNS. The idea of using evaluation function is also briefly
mentioned by Kishimoto [15] when comparing Weak PNS to algorithms described
there.

We define the step function similar to the one in Evaluation Function Based
PNS:

step(value) =


2 if value ≥ t,

1 if − t < value < t,

0 if value ≤ −t,

where t is a parameter corresponding to a value that indicates a player’s high
advantage. We compute the disproof number (DN) as:

dn = maxDN + h(m− 1) step(value)

where maxDN is the maximum DN among children, m is the number of
moves and h > 0 is a constant.

Now we discuss why this modification behaves better than Weak PNS. When
the player on turn has a big advantage and value ≥ t, we probably have to search
many nodes to disprove the node. Since the player is likely going to win, DN is
∞ with a high probability. We can thus set DN to maxDN + 2h(m− 1). In the
case of a balanced position, we count DN nearly the same as in Weak PNS, only
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with the factor h. Because of this, the parameter h should be close to 1. When
the player on turn is in a bad position, we likely do not need to search many
positions to disprove the node, so DN is set to maxDN .

2.2.6 Dynamic Widening

Dynamic Widening is the technique that also tries to avoid the double-counting
problem and overestimation of DN or PN in the way similar to Weak PNS. It
was invented by Yoshizoe [27]. In an OR node we sum only DN of the J best
children instead of summing all children’s DN. The best means that we take the
first J children in the increasing order by PN. This leads to the formula:

dn =
J∑

i=1

dni

where dni is the disproof number and pni is the proof number of i-th child
and pn1 ≤ pn2 ≤ · · · ≤ pnn. The parameter J can be a constant or it can
depend on the number of children.

2.3 Alpha-beta and DFPNS in Lost Positions

Suppose we are not in a final position and Alpha-beta has found out that the
position is lost, or DFPNS has found a disproof. Since a human opponent may
overlook his win, we want to make a move that is still good despite the lost
position. We also know nothing about our opponent, thus the playing heuristic
in lost positions should be general.

One possible solution is to create as much chaotic position on the board as
possible and hope that the opponent gets confused. However, this is a very
domain-dependent and truly hard to define heuristic.

More general solution is to play a move that leads to a loss after the maximal
possible number of moves. By doing that, it is more probable that the opponent
makes a mistake. Using the Iterative Deepening in Alpha-beta, we just choose
the best move in the last iteration where Alpha-beta has not found out that the
position is lost.

Let D be the depth of the deepest loss in the search tree. Looking for D using
DFPNS is also possible, but it may overlook a loss in depth less than D, since it
does not necessarily search every position in the depth less than D. Anyway, we
may count the maximal losing depth and the minimal winning depth similarly to
the counting of proof and disproof numbers.

A won leaf obtains the maximal losing depth ∞ and the minimal winning
depth 0 and vice versa for a lost leaf. The maximal losing depth of an unknown
leaf is 3 and the minimal winning depth is ∞ (both are the worst case). An
internal OR node has the minimal winning depth the minimum from maximal
losing depths of his children plus one, and the maximal losing depth the maximum
of the minimal winning depths of his children plus one.

Using this approach we are able to find a lower bound on the maximal losing
depth of the root node and do the corresponding move.
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3. Algorithms on the Domain of
Tzaar

In this chapter we show how Waltz is implemented. First we describe some
implementation details, mainly our representation of the Tzaar board.

In Section 1.4 we discussed properties of the game Tzaar, mainly the large
branching factor due to two moves in a turn of each player and short games
which last typically up to 28 turns of a player. According to these properties we
discuss which algorithms are suitable for Waltz. Their implementation details
and domain dependent heuristics follows.

3.1 Implementation of Tzaar Board

First of all we show some implementation basis of Waltz. The Tzaar board
is a hexagon with five fields on each side, but we cannot simply store it in the
memory as a hexagon. Thus it is sloped to be fit in the quadratic array board

of size 9 × 9. In Waltz one linear array of size 81 is used instead of quadratic
array.

Example of the array containing the fixed starting position (array members
are separated by spaces):

-1 1 1 1 1 100 100 100 100

-1 -2 2 2 2 -1 100 100 100

-1 -2 -3 3 3 -2 -1 100 100

-1 -2 -3 -1 1 -3 -2 -1 100

1 2 3 1 100 -1 -3 -2 -1

100 1 2 3 -1 1 3 2 1

100 100 1 2 -3 -3 3 2 1

100 100 100 1 -2 -2 -2 2 1

100 100 100 100 -1 -1 -1 -1 1

The number 100 stands for a field outside the board and also for the field in
the center of the board. An empty field with no pieces has 0. Other numbers
stand for different types of pieces: 1 is a white Tott, 2 is a white Tzarra, 3 is
a white Tzaar and black pieces have the same numbers multiplied by −1.

In the array board a player can move in six directions: horizontally left, or
right, vertically up, or down, and diagonally right and down, or left and up. The
other diagonal directions (right and up, left and down) are not possible.

Heights of stacks are in another array of the same size and the same format.
In these arrays the field usually denoted by A1 is in the left upper corner (on the
index 0) and field I5 on the index 80.

Note that during the search there is only one position stored in the memory.
The program remembers also some additional information. The evaluation

function and the other algorithms use some positional and material information,
e.g., the hash value, the highest stacks of each type and the zone of control. This
can be counted statically, i.e., for each position anew, but it would slow down the
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search very much. Hence it is counted incrementally, i.e., the value is changed
when a move is executed.

The zone of control determines how many pieces of a certain type can be
captured by one move, no matter who is on turn. It is used by the evaluation
function and for determining whether a player on turn has lost because of no
possible captures—the zone of control of all opponent’s piece types is zero in this
case.

Details about implementation and the program can be found in the documen-
tation, see Appendix A. The implementation of the algorithms is described in
Section 3.3.

3.2 Algorithms for Tzaar

Since the game tree properties differ in the middle game and in the endgame, we
discuss these parts of the game separately. Also we choose between knowledge
based methods and brute force methods.

Some Chess computer programs use an opening database technique, i.e., tables
with many different openings, to play quicker and better in the beginning of the
game. In Tzaar a lot of games start with a random starting position and the
number of starting positions is very large, exactly 5.94 · 1039 (see Section 1.4).
Hence building an opening database is not possible. Even if we consider only
one starting position, e.g., the fixed starting position, there are many reasonable
moves—it could be one fourth of all moves, thus the opening database for only
the first six turns of a player would be very large. The opponent also can make
Waltz fall out of the book doing a weaker move and this weaker move would not
result in a position much better for Waltz if it is done early in the game. Instead
of the opening database we use random Alpha-beta proposed in Section 2.1.3.

An endgame database is not reasonable too, since the number of positions with
only six pieces is 6.22·1014 which is too much. These positions can also be quickly
solved by a simple Minimax search and the number of positions with more than
six pieces is even larger. The opening and endgame databases are knowledge
based method. According to the presented arguments together with the state
space and game tree complexities and conclusions of Heule and Rothkrantz [14],
we conclude that knowledge based methods are not applicable in Tzaar. Hence
Waltz have to use a brute force search.

Opening has the largest branching factor, but it is not very different from
the middle game. Before the endgame a player (attacker) mostly cannot capture
defender’s high stack, or even win in a few moves by a threat sequence. From
the observation in Section 1.3 defender can escape with his stack from most of
threats easily and there are often more different possibilities how to do it. Thus
we can conclude that algorithms based on threats would be ineffective during
the opening and middle game, therefore Proof-number Search (PNS) is used only
during the endgame.

The only algorithm left that is known to me is Minimax with the Alpha-beta
pruning, we call this algorithm Alpha-beta. In Waltz we use Alpha-beta with
several enhancements, namely:

• Transposition Table (TT): Used for storing moves from the previous shal-
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lower search (the Principal Variation Move, PVM) and also because some
positions can be reached by a few different move sequences.

• Iterative Deepening (ID): Implemented because of time estimation (how
deep may the engine search), and because of PVM.

• domain specific Move Ordering (MO): Done by heuristically assigning values
to moves and sorting moves according to these values. See Section 3.6.

• History Heuristic (HH): Only for the first move of a turn.

• NegaScout (NS): To quickly find cutoff nodes.

• Randomized Alpha-beta: A new enhancement we propose.

See Section 4.1.1 for information how each enhancement makes the search
quicker.

From important enhancements of the Alpha-beta algorithm the Quiescence
Search was not implemented. The main reasons are that in most positions there
is no move which changes the value much and that searching for it would probably
mean to generate all moves which would cost a lot of time. Instead of that, the
concept of the zone of control is used in the evaluation function. Killer Move
heuristic was also not implemented.

In the endgame the branching factor is not so high and threat sequences occur
more frequently. There are also fewer solutions to threats, therefore threats limit
the branching factor and the Proof-number Search (PNS) can be sometimes more
effective than the Alpha-beta search.

PNS as proposed by Allis [7] is very memory consuming and search trees in
Tzaar endgames are too large to fit in the memory. For these reasons we use the
Depth-first Proof-number Search (DFPNS) with the following enhancements:

• Move Ordering: The same as in Alpha-beta.

• Evaluation Function Based PNS (EFB PNS) [26]: Heuristic initialization
of leaves using the evaluation function.

• 1 + ε Trick [18]: To avoid frequent jumping of the search across the tree.

• Weak PNS (WPNS) [12] and Dynamic Widening (DW) [27]: To suppress
overestimation of proof and disproof numbers.

• Heuristic Weak PNS (HW PNS): A new enhancement we propose.

• Time estimation: How many nodes can DFPNS visit within a given time—
at first a certain number of nodes is visited and then the number of nodes
to visit is estimated.

See Section 4.1.4 for evaluation how each enhancement improves the search.
There are some other algorithms searching for the best move in board games.

For the Lambda Search [22], I was not able to think up how to determine quickly
the order of a threat, thus it is not implemented. Since there is mostly more than
one possibility how to escape from a threat, we conclude that the Dependency-
based Search [7] is not suitable for Tzaar. The Monte Carlo Tree Search [8, 17]
is probably worth trying for Tzaar, but it is not implemented at all.
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3.3 Implementation of the Algorithms

The main difference between Tzaar and Chess is that in Tzaar there are two
moves in each turn of a player (except for the first turn of white player). Hence
for simplicity moves are generated separately for the first and the second move
of a turn and they are executed and reverted also separately. In Alpha-beta and
DFPNS functions there are two nested loops, one for the first moves and the
other for the second moves which are generated after doing the first move.

Also the depth in the search tree in Alpha-beta and DFPNS is counted in
moves, not turns of a player. The program has often time to search the tree
with the Alpha-beta algorithm to the depth 5 (2 and half turns of a player), but
not to the depth 6 (3 turns) because of the large branching factor. Hence the
Iterative Deepening increases search depth by one move. In DFPNS a maximal
depth in which a player lose (see Section 2.3) is counted similarly—the depth is
the number of moves.

Again for simplicity, searching functions assume that the first turn of white
player consists of two moves as the other turns. This is in fact not true, but it
does not result in worse play and does not slow down the search much.

The Transposition Table (TT) differs for Alpha-beta and DFPNS. TT for
both algorithms stores for each position the hash value and the number of nodes
searched to obtain the value of a position, i.e., visited nodes in the subtree of the
position. Alpha-beta saves into TT the best moves, the counted value with the
value type (exact value, lower bound, or upper bound) and the depth to which
the position was searched. DFPNS saves the proof and disproof numbers, the
minimal winning depth and the maximal losing depth.

The Alpha-beta pruning enhancements are implemented straightforwardly
with the exception of the History Heuristic. The History Heuristic is counted
only for the first move of a turn, because the array with both moves would have
four dimensions (from and to field for the first and the second move) and thus
would be very large—precisely 814 = 43 046 721.

Note that the Principal Variation Move stored in TT from the previous iter-
ation of ID is tried before generating moves and if it leads the cutoff, we do not
need to generate moves at all.

Enhancements for DFPNS are implemented straightforwardly too. DFPNS
uses the heuristic Move Ordering described in Section 3.6 which, quite surpris-
ingly, helps to solve some positions, see Section 4.1.3.

The tournament version of Tzaar is not implemented, because it is also not
implemented on servers where Tzaar is played and I do not know which strategy
Waltz should follow in the placement phase.

3.4 Search Time Estimation

The program has limited time to search. For Alpha-beta the Iterative Deepening
(ID) is used to search to the maximal depth that can fit into the time limit.
To estimate the duration of searching to the next depth the duration of the last
iteration of ID is multiplied by an expected branching factor.

The expected branching factor is lower than the real branching factor because
of pruning. It depends on the last move done in leaves of the search tree, i.e.,
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whether it was the first, or the second move of a player, and on the number of
stacks on the board. Figure 3.1 shows the multipliers for both moves of a turn.
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Figure 3.1: Graph of multipliers for ID for the first move (blue) and the second
move (red) according to the number of free fields.

DFPNS is usually run until it finds a proof, or a disproof. To fit the search
into the time limit it is stopped after searching a certain number of nodes. To
estimate how many nodes can DFPNS search in a given time, at first a certain
number of nodes is visited1. According to the duration of searching them, the
maximal number of nodes to search within the given time is counted.

3.5 Evaluation Function

The evaluation of a position in Tzaar is used both by the Alpha-beta search and
DFPNS. In positions with a positive value, white player has an advantage (∞
is a win), and vice versa for the black player. Balanced positions, i.e., positions
where no player has an advantage, obtain number near to zero. We use basically
this formula:

eval(position) = material(position,White) + positional(position,White)

−material(position,Black)− positional(position,Black)

The material value for a player is the sum of values of player’s stacks:

material(position, player) =
∑

s is a stack
of player

heightValue(s) · countValue(s)

1For example it can be 100 000, but it depends also on the hardware.
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The material value is more important in the first half of the game. The material
value together with some positional information is counted incrementally (when a
move is executed or reverted), other positional features evaluated by the function
material are counted statically for each leaf node that is not won by a player.

The function heightValue grows rapidly for heights less than four, then stays
nearly the same and decreases for stacks higher than eight. The reason is that
instead of building a very high stacks a player can build more lower stacks, which
is usually better. Values of this array are shown in Figure 3.2. The function
countValue is inversely proportional to the number of stacks with the same piece
type as the stack s . Its values are illustrated in Figure 3.3.
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Figure 3.2: The function heightValue: the value of a stack according to its height.

For the positional value the Zone of Control (ZOC) is maintained. It deter-
mines how many stacks of a certain type can be captured by one move, no matter
who is on turn. It is used also for determining whether a player on turn has lost
because of no possible captures—the zone of control of all opponent’s piece types
is zero in this case.

The positional value for a player is roughly the sum of these bonuses:

• 20 000 000 for an immediate threat: The player is on turn and he can capture
all stacks of an opponent’s piece type (the player can win).

• 1 000 for a threat, when the player is not on turn.

• 1 000–200 000 if the opponent has few possible captures.

• Value of ZOC:
∑

opponent′s
piece type t

stacksInZOC(t) · (1− count(t)/ initialCount(t))

• 25 000 for each player’s piece type that is “secure”—the player has a stack
higher than all stacks of his opponent—and 100 000 if all types are secure.
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Figure 3.3: The function countValue: the value of a stack according to the number
of pieces of the same type.

• 50 000 for stacks with height at least 2 of all types.

• 50 000 if an opponent’s valuable stack can be captured.

• 1 000–100 000 for a high stack that cannot move.

• 10–25 for high stacks not on the margin of the board and −30 for a stack in
the corner, since a high stack has only a little number of possibilities how
to move in such positions.

We remark that the most of the evaluation function was done by inventing
features and setting constants intuitively according to the observations done in
Section 1.3 and then playing with Waltz. We also tested different versions of
the evaluation function by numerous play-outs.

3.6 Move Ordering

The Move Ordering is done straightforwardly by generating moves into an array,
assigning them a heuristic value and simply sorting them by the value using the
QuickSort algorithm. The less the sort value is, the better the move should be
and the sooner is executed. Moves for a player on turn are generated separately
for the first and the second move of a turn and assigning a value to the moves
also differs for the first and the second move.

The first move is always a capture. Capturing a stack of a type that occurs on
the board quite often, i.e., there are relatively many visible pieces of that type, is
not very advantageous, thus the sort value is linearly dependent on the count of
stacks of the captured type—the multiplier is constant CaptureCountMult with
the default value 20.
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The height of the captured stack is also taken into account and it is more
significant than the count of stacks of the stack type. The dependence on the
height grows very fast with the height less than six and then it is approximately
linear, see Figure 3.4.
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Figure 3.4: The function heightValueOfCapture value of a stack according to its
height in the Move Ordering.

For the first move the History Heuristic is also taken into account. The number
of prunes caused by a move, precisely by the move with the same fields from and
to, is multiplied by the constant HistoryPruneMult (the default value is 20) and
subtracted from the value.

This leads to a formula that assigns values to capture moves:

captureMove(move, pos) = heightValueOfCapture(move)

− CaptureCountMult · countType(pos , capturedType(move))

− HistoryPruneMult · numberOfPrunes(move))

The second move can be a capture too, but often it is a stacking move, and
rarely a pass move. From the observation in Section 1.3 stacking is mostly the
best choice and stacking moves should be done before capturing a stack with the
height one. Capturing stacks with height at least three is mostly better than
doing a stack move in the second move of a turn. Passing is reasonable only in
the endgame and it should be tried at last.

For a capturing move the sort value is counted in the same way as for the first
move. For a stacking move we use this formula:

stackMove(move, pos) = StackBonus

+ StackCountMult · countType(pos , stackingType(move))
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In other words the value is linearly dependent on the count of stacks of
the same type as the resulting stack has and the multiplier is the constant
StackCountMult (default value is only 3). Since capturing stack types with small
count on the board can often lead to a win, the constant StackBonus (with default
value 6) is added to the value of a stacking move.

Different values of constants are tested in Section 4.1.2.

3.7 Versions of Waltz

As shown in Chapter 4, Waltz is able to play on the level of best players on
Boiteajeux.net. Thus for beginner and intermediate players we want to have
versions that are not so strong. We created four versions: beginner, intermediate,
expert, and unbeatable. We describe the versions and which algorithms they use.

The expert and unbeatable versions have all features mentioned above (Alpha-
beta to the depth according to the time estimation, DFPNS, the best evaluation
function . . . ). They only differ in the time limit¿ the expert version has 30
seconds and the unbeatable version has 300 seconds2. For the first three turns
the Randomized Alpha-beta proposed in Section 2.1.3 is used with margin 20
(and without the History Heuristic and the NegaScout), then we run Alpha-beta
without randomness, but with all enhancements. When the number of stacks is
at most 23, DFPNS is used. If it does not find a solution, Alpha-beta is called
also with the time limit of 30, or 300 seconds. If DFPNS search disproves the
position, we call Alpha-beta to find a move leading to the deepest loss.

The intermediate version does not use DFPNS and it has only some features
of Alpha-beta based algorithms (like the best evaluation function, but not the
History Heuristic and the NegaScout). It searches only to the depth limited by
two and half turns, i.e., five moves, and the Randomized Alpha-beta is used in
the whole game (the margin is again 20).

The beginner version is similar to the intermediate, but more dumb. It also
does not use DFPNS, the Negascout and the History Heuristics. Moreover, it
searches to the depth of only two turns, i.e., four moves, the margin for randomly
selecting between the best moves in Randomized Alpha-beta is 5 000, and most
importantly it has a very simple evaluation function which consists only of the
incremental part of the best evaluation function (also with worse constants). Thus
the evaluation is based mostly on the material part.

2The time limits are occasionally a little exceeded due to search time underestimation.
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4. Waltz’s Results

In this chapter we show how our implementation of the algorithms described
in Chapter 3.2 is successful. First we give results how the enhancements of
the algorithms and their parameters make Waltz quicker. The next section
shows results against other programs that are available on the Internet and that
are briefly described in Section 1.5 In the last section we give results against
human opponents on Boiteajeux.net (BAJ). From the results we can conclude
that Waltz is able to play on the level of best human players on BAJ server. We
can also see that this program is now very likely the best available AI for Tzaar.

4.1 Experiments with Waltz

This section shows the results of search speed optimization. We measure the
runtime for various combinations of enhancements for the search algorithms and
for different values of parameters for these enhancements. Then we choose the
enhancements and values that were best in experiments.

For parameter tuning and measuring the runtime we use two sets of Tzaar
positions which can be downloaded from our website [23]. The first set, we call
it MidSet , consists of 200 middle game positions with exactly 41 stacks on the
board. It is intended for testing Alpha-beta. We got the positions from Waltz’s
games on BAJ.

For experimenting with DFPNS we have a set of 713 endgame positions with
less than 27 stacks on the board, we call it EndSet . We took these positions
from Waltz’s games with strong and intermediate players on BAJ. This set
contains both easy positions (Waltz solves them quickly) and hard positions
(neither DFPNS, nor Alpha-beta are able to find a solution within a minute).
Some positions are won for the player on turn, some are won for the other player.
We remark that overall most positions are solved by DFPNS either in a time less
than a second, or in time much more than one minute (which means practically
that they cannot be solved by DFPNS).

In following sections we show tables with search durations in seconds for
different enhancements or parameter settings for Alpha-beta and DFPNS. A time
in a table is a sum of durations of searching each position in one of the test sets.
Note that when we test the influence of a constant on the search duration, other
constants have their default values.

For automatically doing experiments, a testing program was used. For each
position in the given set it starts the search and then reads the search duration
from the output (without the time spent on loading a position and saving results
of the search).

The parameter or enhancement setting is compiled in Waltz itself, but the
algorithm used for the search and the time limit can be specified via command
line parameters. The testing program outputs the sum of search durations of all
positions in the set.

We performed the tests on a Dual-Core AMD Opteron 2216 server with 64 GiB
of memory, but we used only one of its cores and a small part of memory.
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4.1.1 Alpha-beta Enhancements

Each middle game position in the test set was run to depth of 3 turns of a
player, i.e., 6 moves. The depth of 6 moves was chosen, because it is often hard
to search—the search duration for that depth is mostly above 30 seconds, but it
only rarely exceeds two minutes, thus the depth is feasible for Waltz. Depth 5 is
usually done within a second in the middle game and, on the other hand, depth 7
would last at least 30 times longer than depth six, thus it is mostly not feasible
for Waltz in the middle game.

Table 4.1 shows the efficiency of the Alpha-beta enhancements. Constants
used by the algorithms were set according to another statistical experiments
(see default values of constants in the next section). Each MidSet position was
searched to the depth of 3 turns, i.e., 6 moves. The depth of 6 moves was chosen,
because it is often hard to search—the search duration for that depth is mostly
above 30 seconds, but it only rarely exceeds two minutes, thus the depth is feasi-
ble for Waltz. Depth 5 is usually searched within a second in the middle game
and, on the other hand, searching to depth 7 would last at least 30 times longer
than depth six, thus it is mostly not feasible for Waltz in the middle game.

Enhancements Duration [s]

All enhancements (ID, PVM, MO, HH, NS) 3 800
Without NegaScout (ID, PVM, MO, HH) 4 134

Without History Heuristic (ID, PVM, MO, NS) 8 906
Without NegaScout and History Heuristic (ID, PVM, MO) 9 282

Randomized Alpha-Beta with ID, PVM and MO 9 803
Only Principal Variation Move and Iterative Deepening 22 712

No enhancement (even without ID) 36 764
Only Iterative Deepening 37 586

Only Move Ordering and Iterative Deepening 38 189

Table 4.1: Duration of the Alpha-beta search with various enhancements combi-
nations.

From these experiments we may conclude that it is best to use all Alpha-beta
enhancements, i.e., the Transposition Table with the Principal Variation (PVM),
the Iterative Deepening (ID), the Move Ordering (MO), the History Heuristic
(HH) and the NegaScout (NS). We observe that PVM and HH are the most
important. Also note that NegaScout without HH is only a little better than not
using NegaScout at all, i.e., only using ID, PVM and MO.

The 7th and 8th rows of the table show how much time the previous iterations
of ID cost (in this case it is the search to depths from 1 to 5), since using only
ID without PVM is useful only for the time estimation.

4.1.2 Alpha-beta Enhancements Parameters

In this section we show how constants have influence on the Alpha-beta search
duration. The only enhancements with parameters are the Move Ordering, the
History Heuristic and the Transposition Table. The tests were done on MidSet
with the depth limit of 6 moves, i.e. the same way as in the previous section.
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For the Move Ordering, there are three important constants in the formulas
in Section 3.6: StackBonus (the default value is 6, Table 4.2), StackCountMult
(the default value is 3, Table 4.3), and CaptureCountMult (the default value
is 20, Table 4.4). From various constant settings, we can see the importance of
the Move Ordering on the search duration.

StackBonus 0 3 6 9 12 15 21 30
Duration [s] 3892 3865 3875 3847 3843 3812 3814 3817

StackBonus 39 51
Duration [s] 3846 3860

Table 4.2: Duration of the Alpha-beta search with different values of the constant
SortStackBonus.

From Table 4.2 we observe that setting SortStackBonus too high or too low,
i.e., taking capture moves earlier or later in the order, increases the search dura-
tion.

StackCountMult 1 2 3 4 5 6 7
Duration [s] 3924 3862 3852 3825 3774 3765 3749

StackCountMult 8 10
Duration [s] 3741 3796

Table 4.3: Duration of the Alpha-beta search with different values of the constant
SortStackCountMult.

Table 4.3 shows that taking moves creating piece types with more stacks later
decreases the search time.

CaptureCountMult 1 2 4 6 8 10 15
Duration [s] 5285 4682 4190 3892 3809 3749 3759

CaptureCountMult 18 20 25 30
Duration [s] 3806 3852 3874 3913

Table 4.4: Duration of the Alpha-beta search with different values of the constant
SortCaptureCountMult.

The History Heuristic is also involved in the Move Ordering. Durations for
different values of the multiplier that determines the influence of HH in the Move
Ordering formula for the first move of a player are shown in Table 4.5. Quite
surprisingly, the best value is 5 and it is smaller than the best value for the
constant SortCaptureCountMult which is approximately 15. The default value
was 20 before the experiments.

Table 4.6 shows the influence of the size of the Transposition Table on the
search duration. We observe that the size of 218 is sufficient for searching for
searching to depth 6 and setting the size higher does not help much. Note that
there is often much time spent on memory allocation for higher sizes of TT—with
the size of 224 the search took 3845 s while for 225 it took 3906 s. The default
value is 219.
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HistoryPruneMult 3 5 10 15 20 25 30
Duration [s] 3827 3821 3845 3876 3886 3899 3919

Table 4.5: Duration of the Alpha-beta search with different values of the constant
SortHistoryPruneMult.

Binary logarithm of TT size 12 13 14 15 16 17 18
Duration [s] 4360 4176 4064 4003 3977 3911 3883

Binary logarithm of TT size 19 20 21 22 23 24 25
Duration [s] 3844 3841 3833 3838 3847 3845 3906

Table 4.6: Duration of the Alpha-beta search with different sizes of the Transpo-
sition Table represented by binary logarithms.

4.1.3 DFPNS Enhancements

Table 4.7 shows the importance of enhancements for DFPNS. Note that there is
nearly no difference between Dynamic Widening (DW), Weak PNS (WPNS) and
Heuristic Weak PNS (HW PNS), and that one single enhancement is still not
enough. Surprisingly, sorting moves heuristically using the same algorithm as in
Alpha-beta is useful. We ran the tests on EndSet positions with the time limit
of 60 seconds.

Enhancements Solved (out of 713)

HW, ET and EFB 484
WPNS, ET and EFB 484

DW, ET and EFB 480
HW, ET and EFB without sorting moves 465

Only 1 + ε Trick 343
Without enhancements 336
Only Heuristic Weak 289

Only Evaluation Function Based 289

Table 4.7: Results of the DFPNS search with different enhancements.

4.1.4 DFPNS Enhancements Parameters

Now we show how the constants of DFPNS enhancements have influence on
the solvability. The constants were already set empirically and by doing similar
experiments. The experiments are mostly done with Heuristic Weak PNS, 1 + ε
Trick, and Evaluation Function Based DFPNS (unless otherwise stated). We
used the positions from EndSet and the time limit of 60 seconds again.

We experimented with the size of the Transposition Table (TT), the results
are shown in Table 4.8. The default size was 220 and when we changed it to 225,
the number of solved positions increased only by 4. On the other hand, the size
at least 219 is needed.

For the 1+ε Trick, only the value of constant ε is important. Table 4.9 shows
the number of solved positions for different values of the constant ε. The default
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Binary logarithm of TT size 18 19 20 21 22 23 25
Solved (out of 713) 467 482 484 485 488 487 488

Table 4.8: Results of the DFPNS search with various sizes of Transposition Table
represented by binary logarithms.

value was 0.125, but from the experiments we can conclude that best values are
surprisingly at least 4. Note that function defined by these values is not convex
opposed to functions in the other tables.

Value of ε 64 32 16 8 4 2 1 0.5 0.25
Solved (out of 713) 487 487 487 487 487 486 485 483 483

Value of ε 0.125 0.0625
Solved (out of 713) 484 476

Table 4.9: Results of the DFPNS search with various values of the constant ε.

There are three constants in Evaluation Function Based DFPNS called A,
B (multipliers in the step function for proof and disproof numbers) and T (the
threshold). Results for different values of these constants are shown in tables 4.10
(the default value of A is 10), 4.11 (the default value of B is 10), and 4.12 (the
default value of T is 50 000 000). We can see that the best value for T is very high
(half of the value of a win), A should be very low (less than 10) and B should
can be anything higher than approximately 20.

EFB DFPNS constant A 1 3 5 8 10 12 15 20
Solved (out of 713) 484 484 484 482 484 471 471 468

Table 4.10: Results of the DFPNS search with various values of the constant A
for EFB DFPNS.

EFB DFPNS constant B 1 3 5 8 10 12 15 20 50
Solved (out of 713) 296 397 443 470 484 483 483 484 484

Table 4.11: Results of the DFPNS search with various values of the constant B
for EFB DFPNS.

EFB DFPNS constant T 105 106 107 108 109

Solved (out of 713) 293 351 387 484 485

Table 4.12: Results of the DFPNS search with various values of the constant T
for EFB DFPNS.

We also tried this enhancement with a step function that have more steps,
but it did not help to increase the number of solved positions.

Heuristic Weak PNS has two parameters: the threshold T for the step func-
tion and the multiplier H. From the experiments we observed that the best
values are h = 1 and t ≥ 106—the value of a position in which a player has a
significant advantage. We remark that the less H is, the algorithm behave more
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like Weak DFPNS without the step function. We tried this enhancement with a
step function that have more steps, but it did not help to increase the number of
solved positions.

Heuristic Weak DFPNS constant H 1 2 3 5
Solved (out of 713) 484 444 374 301

HW DFPNS constant T 104 105 106 107 108 109

Solved (out of 713) 468 474 484 484 484 484

Table 4.13: Search results with different values of the constant H and T for the
Heuristic Weak DFPNS.

As we can see from Table 4.7 the Dynamic Widening has nearly the same
solvability as Heuristic Weak DFPNS (both used with the 1 + ε Trick and the
Evaluation Function Based enhancement). We experimented with the the con-
stant J (the number of disproof numbers taken into account in increasing order
by proof numbers of their nodes) and observed that J should be less than 10 and
that the best value is 3. Table 4.14 shows the search duration for different values
of the constant J

Dynamic Widening constant J 2 3 4 5 7 8 10 15
Solved (out of 713) 481 483 480 480 480 480 467 457

Table 4.14: Results of the DFPNS search with different values of the constant J
for the Dynamic Widening.

4.1.5 DFPNS versus Alpha-beta in Endgames

DFPNS was designed to find long winning strategies where the player can force
his opponent to have only a little number of possible moves. We tried DFPNS
on Tzaar endgames, although Tzaar has relatively high branching factor even in
endgames (see Section 1.4) and it is hard to guess for DFPNS which move is
worth trying. On the other hand, the player can sometimes force his opponent
to have a small number of moves.

To decide whether to use Alpha-beta or DFPNS in endgames we ran statisti-
cal experiments. Using the best possible setting of constants in DFPNS, it solved
495 out of 713 positions on EndSet . Then we tried Alpha-beta (with all enhance-
ments) and it solved 506 positions. There are 20 positions which DFPNS solved
and Alpha-beta did not, so DFPNS is meaningful to use in Waltz.

Thus in the program we try to use DFPNS first (for a part of the time limit)
and if it does not succeed because of the time limit, we call Alpha-beta. To deal
with lost positions that were disproved by DFPNS we call Alpha-beta on them
too, see Section 2.3 for theoretical details.

4.2 Playing with Other Programs and People

In this section we show how is our program successful against human and artificial
opponents. We let Waltz play on a game server against people and in a program

42



against other programs for playing Tzaar.

4.2.1 Different Robot Versions against Each Other

To check whether the Waltz versions are set well, they played games against
each other in the program called Arena. The program manages many games
between two versions of Waltz.1 Each game starts in the fixed starting position
and it is random who is white.

The beginner version was beaten by the intermediate version 33 times and
won 5 times, the intermediate version was beaten by the expert version 21 times
and won 4 times and the expert version was defeated by the unbeatable version
19 times and won 6 times. From these results we conclude that the strength of
robot’s versions increases according to names of the versions.

4.2.2 Results against Computer Opponents

We tested Waltz against other existing programs for playing Tzaar that are
available up to March 6, 2013: HsTZAAR [24] and programs of teacher and stu-
dents from University of Alaska [31] ((Mockinator, Mockinator++, BiTzaarBot
and GreensteinTzaarAI). See Table 4.15 for the results.

Program Wins Losses Note

HsTZAAR 479 121 With algorithm pscout full 4 on 4 cores.

HsTZAAR 65 18 With algorithm pscout full 5 on 5 cores.
GreensteinTzaarAI 342 53 We could not set the time limit.

BiTzaarBot 196 5 The time limit was 40 seconds.

Mockinator++ 83 2 The time limit was 40 seconds.

Mockinator 82 1 The time limit was 40 seconds.

Table 4.15: Results of Waltz against other Tzaar-playing programs. Wins and
losses are counted from the Waltz’s point of view.

During the tests, Waltz had time limit of 30 seconds. Each game started on
a random starting position. We performed tests with HsTZAAR on Intel Xeon
ES-1620 server with 64 GiB of memory and tests with the other programs on a
AMD Turion II P560 Dual-Core notebook with 4 GiB of memory.

There is also program TZ1 and robots on BoardSpace.net [3] available, but
due to their design it is not possible to run automatic play-outs between them and
Waltz. Based on some games that we played with these programs we believe
that Waltz can win most of play-outs against them. Robots on BoardSpace.net
win only rarely against an experienced player as one can see from their results.

4.2.3 Results on Boiteajeux.net with Human Opponents

To test Waltz against people we chose the game server Boiteajeux.net (BAJ) [28].
More than 35 turn-based games including Tzaar are played there in the way sim-
ilar to play by email (a player send moves to his opponent by an email and then
waits for the answer). Instead of emails, an HTML interface is provided.

1It was also used for deciding which parameters are better for the evaluation function.
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For each game, an ELO rating is counted. For a win a player obtains some
ELO points according to his and opponent’s ELO and his opponent loses the
same number of points (it is always at least one point). New player receives ELO
1 500. Robots exist on BAJ only for a few games and Waltz is the only one for
Tzaar there.

There are two main reasons why to choose BAJ for the robot. Mainly a lot of
people play Tzaar there—23 871 Tzaar games were finished on BAJ from October
31, 2008 to March 6, 2013. The second is that robot’s communication with the
server can be done by a simple HTTP client (it is checking games where the
robot is on turn and then playing moves). The other possibility instead of BAJ
is BoardSpace.net which run under Java, so one cannot create an HTTP client.
Java robot would be also slow.

We created four different versions of Waltz: for beginners, for intermediate
players, for experts and “unbeatable” that are described in section 3.7.

Now we describe how Waltz was successful against human opponents on
BAJ.

We released Waltz in the expert version on March 20, 2012 under username
Pauliebot and it was under development until April 4, 2012. After that we made
only minor updates, mostly improving the evaluation function. On April 24,
2012 we released the other versions of Waltz (usernames are PauliebotBegin-
ner, PauliebotMedium and PauliebotUnbeatable). New versions of Waltz are
announced on BAJ forum for Tzaar.

ELOs of players and other data in this section were up to the date April 30,
2013. The results can be found on Boiteajeux.net server using a search in the left
menu. To play with the robot, add the robot’s username in the field Guests on
the page for creating new games.

The beginner robot with username PauliebotBeginner, ELO 1 556 and 230 fin-
ished games is probably the most popular, because it is challenging even for in-
termediate players. For example rupelboom (ELO 1 827) won against it 14 times
and lost 3 times, but tchako (ELO 1 813)lost with the robot 8 times. Beginners,
i.e., players with only a few finished Tzaar games, mostly do not win against the
beginner robot. Thus the robot might have to play weaker, but I was not able to
think out how to do it without making serious mistakes and still playing on the
level of real beginners. The depth to which the robot searches is discussable.

The intermediate robot PauliebotMedium (ELO 1 776) played only 70 games.
For example rupelboom (ELO 1 827) won all five games against the intermediate
robot, PhilDakota (ELO 1 701) won eight games and lost six games and surpris-
ingly, tchako (ELO 1 813) won two times and lost four times. Thus the robot is
challenging for intermediate players (ELO around 1 800), but it can be sometimes
defeated by tchako who is losing with the beginner robot. The latter is probably
caused by a different robot’s strategy—tchako can defeat the intermediate’s one,
but not the beginner’s one.

The expert version played 157 games so far.2 It won 117 of them and it is
the 14th best Tzaar player with ELO 2 083. Most important results of the expert
version are in of Table 4.16. We conclude that the expert version played on the
level of best players on BAJ, but sometimes intermediate players were able to
defeat Waltz.

2Some of these games were played for testing purposes.
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Player Rank ELO Wins Losses Note

SlowBrain 1st 2 467 1 3 He is far better than other players.

Gambit 2nd 2 272 2 4 Two games lost during development.

Paulie 3rd 2 220 8 3 Waltz mostly wins in offline games.

evrardmoloic 17th 2 062 1 1 He was 2nd in the summer 2012.

PhilDakota 68th 1 701 14 3
mat76 72th 1 692 19 1
Gregg 101th 1 618 14 5

Table 4.16: Some results of the expert version. Wins and losses are counted from
the Waltz’s point of view.

The unbeatable Waltz version has ELO 2 072, the 15th highest, and played
76 games from which it won 46 games.3 The most important results of the
unbeatable version are in Table 4.17. The 9 wins against SlowBrain are a great
success because SlowBrain is far better than other players. From these results
we conclude that more time to search helps Waltz to play better. This was
confirmed also by games between the unbeatable and the expert versions where
the unbeatable won 65 of 99 games.

Player Rank ELO Wins Losses

SlowBrain 1st 2 467 9 18
Paulie 3rd 2 220 1 3
mnmr 5th 2 184 0 1
Zeichner 9th 2 143 1 0
Talisac 11th 2 123 3 0
azazhel 26th 1 931 8 2

Table 4.17: Some results of the unbeatable versions. Wins and losses are counted
from the Waltz’s point of view.

The most frequently appearing reason why Waltz lost some games on BAJ
was the loss of the last stack of Tzarras. We observed that in two or three last
turns of these lost games Waltz had no chance to create a stack of Tzarras which
could not be captured by the opponent—Waltz was probably not aware of such
an opponent’s trap soon enough. Another bad thing in Waltz’s behavior during
these games was losing quite high stacks (size 3, 4, or even 5) during the middle
game.

We thus tried to improve the evaluation function to avoid these problems. The
version with the enhanced evaluation function won 136 and lost 102 games against
the version with the old evaluation function. On March 4, 2013 we released the
version with enhanced evaluation function.

3Some of these games were against other Waltz versions—this was done to increase robot’s
ELO, otherwise strong players would not want to play against an opponent with low ELO.
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Conclusion and Future Work

As we observed in Chapter 4 we created a robot that is able to play on the level of
best players and that can defeat all other available programs. We conclude that
the Alpha-beta algorithm is quite successful in the domain of Tzaar and maybe
in the domains of games that have large branching factor and a good evaluation
function is not so hard to implement (unlike Go).

We also tested the Depth-first Proof-number Search (DFPNS) on endgame
positions that have mostly still quite a big number of possible moves. We have
found that performance of this algorithm is similar to Alpha-beta in endgames—
sometimes DFPNS solves endgame positions quicker and sometimes Alpha-beta
is quicker. The latter is caused by the high branching factor and the fact that
there are often not enough forcing moves in Tzaar.

We dealt with two problems specific for playing with people. We proposed
Randomized Alpha-beta, a new algorithm for randomly choosing a good enough
move, and we discussed how to play in lost positions. We also gave a new en-
hancement for DFPNS called Heuristic Weak PNS which was developed from
Weak PNS.

There are plenty of things left for future work and research. One can always
adjust the evaluation function together with other constants in the program.
Maybe there are positional or material properties that should be added to the
evaluation function to make it even better. Also the implementation of algorithms
can be made better, for example we do not probably need to generate all moves
every time, but we can maintain a list of possible moves for each player and modify
it according to moves that are played. From the algorithmic view there are many
Alpha-beta enhancements invented mostly for Chess that were not tested in the
domain of Tzaar, e.g., maybe the Quiescence search can help.

DFPNS has performance similar to Alpha-beta in endgames, but it is left to
future research to adjust DFPNS for games with a large branching factor, prob-
ably using some heuristics like the Move Ordering. The new algorithm Heuristic
Weak PNS turned out not to be very successful for Tzaar, but in another domains
such as Othello and Shogi, it may help.

The Monte Carlo Tree Search (MCTS) is probably the most promising ap-
proach, and we consider it to be the next direction where we would like to move
Waltz’s development. This algorithm is very successful for Go (the best Go
programs use it) and Go has also a big branching factor as Tzaar. Hence MCTS
is worth trying for Tzaar, although in the endgame it can be better to try DFPNS
or Alpha-beta that can solve the position deterministically.

Another direction lies in parallelizing Waltz’s algorithms, which is a natural
step we would like to try—both DFPNS and Alpha-beta can be made parallel.
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[8] Baudǐs, P.: MCTS with Information Sharing. Master’s thesis, Faculty of
Mathematics and Physics, Charles University in Prague (2011)

[9] Breuker, D.M., van den Herik, H.J., Uiterwijk, J.W.H.M.: Replacement
schemes and two-level tables. ICCA Journal pp. 175–180 (1996)

[10] Burm, K.: Tzaar rules. GIPF project, http://www.gipf.com/tzaar/

rules/rules.html

[11] Burm, K.: Tzaar strategy. GIPF project, http://www.gipf.com/tzaar/

strategy/strategy.html

[12] Hashimoto, J., Hashimoto, T., Iida, H., Ueda, T.: Weak proof-number
search. In: Proceedings of the 6th international conference on Computers
and Games. pp. 157–168. Springer-Verlag, Berlin, Heidelberg (2008)

[13] van den Herik, H.J., Winands, M.: Proof-Number Search and Its Variants,
pp. 91–118. Springer, Berlin, Heidelberg (2008)

[14] Heule, M.J.H., Rothkrantz, L.J.M.: Solving games: Dependence of applica-
ble solving procedures. Sci. Comput. Program. 67(1), 105–124 (2007)

[15] Kishimoto, A.: Dealing with infinite loops, underestimation, and overesti-
mation of depth-first proof-number search. In: Fox, M., Poole, D. (eds.) Pro-
ceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence,
AAAI 2010. AAAI Press, Atlanta, Georgia, USA (2010)

[16] Knuth, D.E., Moore, R.W.: An analysis of alpha-beta pruning. Artificial
Intelligence 6(4), 293–326 (1975)

49

http://boardgamegeek.com/boardgamehonor/8763/2008-golden-geek-best-2-player-board-game-nominee
http://boardgamegeek.com/boardgamehonor/8763/2008-golden-geek-best-2-player-board-game-nominee
http://www.internationalgamersawards.net/winners-and-nominees/nominees/2008-nominees
http://www.internationalgamersawards.net/winners-and-nominees/nominees/2008-nominees
http://www.boardspace.net/
http://code.google.com/p/daedalus-game-manager/
http://code.google.com/p/daedalus-game-manager/
http://www.spellenprijs.nl/historie.html
http://www.spellenprijs.nl/historie.html
http://boardgamegeek.com/boardgame/31999/tzaar
http://boardgamegeek.com/boardgame/31999/tzaar
http://www.gipf.com/tzaar/rules/rules.html
http://www.gipf.com/tzaar/rules/rules.html
http://www.gipf.com/tzaar/strategy/strategy.html
http://www.gipf.com/tzaar/strategy/strategy.html
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[23] Valla, T., Veselý, P.: Waltz, http://kam.mff.cuni.cz/~vesely/tzaar/

[24] Vasconcelos, P.: HsTZAAR, http://www.dcc.fc.up.pt/~pbv/stuff/

hstzaar/

[25] Wentink, D.: Analysis and Implementation of the game Gipf. Master’s thesis,
Universiteit Maastricht (2001)

[26] Winands, M.H.M., Schadd, M.P.D.: Evaluation-function based proof-
number search. In: Proceedings of the 7th international conference on Com-
puters and games. pp. 23–35. CG’10, Springer-Verlag, Berlin, Heidelberg
(2011)

[27] Yoshizoe, K.: A new proof-number calculation technique for proof-number
search. In: Proceedings of the 6th international conference on Computers
and Games. pp. 135–145. CG ’08, Springer-Verlag, Berlin, Heidelberg (2008)

[28] Boiteajeux board-gaming portal, http://www.boiteajeux.net/

[29] GAMES game awards. Games Magazine, http://www.

gamesmagazine-online.com/gameslinks/archives.html#2009awards

[30] Spiel des jahres, awarded games 2008, http://www.spiel-des-jahres.

com/cms/front_content.php?idart=925

[31] Tzaar - ai game project for 2011, http://www.math.uaa.alaska.edu/

~afkjm/cs405/tzaar/

[32] Zobrist, A.L.: A new hashing method with application for game playing.
ICCA Journal 13(2), 69–73 (1990)

50

http://www.johannes-schwagereit.de/tz1/
http://www.johannes-schwagereit.de/tz1/
http://kam.mff.cuni.cz/~vesely/tzaar/
http://www.dcc.fc.up.pt/~pbv/stuff/hstzaar/
http://www.dcc.fc.up.pt/~pbv/stuff/hstzaar/
http://www.boiteajeux.net/
http://www.gamesmagazine-online.com/gameslinks/archives.html#2009awards
http://www.gamesmagazine-online.com/gameslinks/archives.html#2009awards
http://www.spiel-des-jahres.com/cms/front_content.php?idart=925
http://www.spiel-des-jahres.com/cms/front_content.php?idart=925
http://www.math.uaa.alaska.edu/~afkjm/cs405/tzaar/
http://www.math.uaa.alaska.edu/~afkjm/cs405/tzaar/


List of Figures

1.1 Tzaar pieces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Fixed starting position . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 The Tzaar board with a sample position. The possible moves of

the black Tzaar stack in the second move of a turn are marked
by arrows, the dashed arrows represent stacking moves and the
numbers denote the stack heights greater than one. . . . . . . . . 7

1.4 In this position, black player is on turn. After the last black Tzaar
stack captures white Tzaar piece in the right corner, the only move
not leading to a loss for black is the pass move. . . . . . . . . . . 8

1.5 Maximum (red), average (yellow) and minimum (blue) branching
factor according to the number of stacks on the board. . . . . . . 11

2.1 Example of a search tree. The position ? need not to be searched,
since the position B has value at most−8 and thus the root position
have value 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Example of a part of an AND/OR tree with proof and disproof
numbers. Circles denote AND nodes and squares denote OR nodes.
The highlighted OR node is the most proving node in this tree. . 21

3.1 Graph of multipliers for ID for the first move (blue) and the second
move (red) according to the number of free fields. . . . . . . . . . 31

3.2 The function heightValue: the value of a stack according to its
height. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 The function countValue: the value of a stack according to the
number of pieces of the same type. . . . . . . . . . . . . . . . . . 33

3.4 The function heightValueOfCapture value of a stack according to
its height in the Move Ordering. . . . . . . . . . . . . . . . . . . . 34

51



52



List of Tables

1.1 Minimum, maximum and average branching factor according to
the number of stacks on the board. The table contains also the
number of positions from which the values were obtained. We take
positions reachable by two possible ways only once. We sampled
positions from real games at BAJ [28]. . . . . . . . . . . . . . . . 11

4.1 Duration of the Alpha-beta search with various enhancements com-
binations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Duration of the Alpha-beta search with different values of the con-
stant SortStackBonus. . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Duration of the Alpha-beta search with different values of the con-
stant SortStackCountMult. . . . . . . . . . . . . . . . . . . . . . 39

4.4 Duration of the Alpha-beta search with different values of the con-
stant SortCaptureCountMult. . . . . . . . . . . . . . . . . . . . 39

4.5 Duration of the Alpha-beta search with different values of the con-
stant SortHistoryPruneMult. . . . . . . . . . . . . . . . . . . . 40

4.6 Duration of the Alpha-beta search with different sizes of the Trans-
position Table represented by binary logarithms. . . . . . . . . . . 40

4.7 Results of the DFPNS search with different enhancements. . . . . 40
4.8 Results of the DFPNS search with various sizes of Transposition

Table represented by binary logarithms. . . . . . . . . . . . . . . . 41
4.9 Results of the DFPNS search with various values of the constant ε. 41
4.10 Results of the DFPNS search with various values of the constant A

for EFB DFPNS. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.11 Results of the DFPNS search with various values of the constant B

for EFB DFPNS. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.12 Results of the DFPNS search with various values of the constant T

for EFB DFPNS. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.13 Search results with different values of the constant H and T for

the Heuristic Weak DFPNS. . . . . . . . . . . . . . . . . . . . . . 42
4.14 Results of the DFPNS search with different values of the constant J

for the Dynamic Widening. . . . . . . . . . . . . . . . . . . . . . . 42
4.15 Results of Waltz against other Tzaar-playing programs. Wins

and losses are counted from the Waltz’s point of view. . . . . . . 43
4.16 Some results of the expert version. Wins and losses are counted

from the Waltz’s point of view. . . . . . . . . . . . . . . . . . . . 45
4.17 Some results of the unbeatable versions. Wins and losses are count-

ed from the Waltz’s point of view. . . . . . . . . . . . . . . . . . 45

53



54



List of Abbreviations

• AI — Artificial Intelligence

• BAJ — Boiteajeux.net

• DFPNS — Depth-first Proof-number Search

• DGM — Daedalus Game Manager

• DN — Disproof number

• DW — Dynamic Widening

• EFB DFPNS — Evaluation Function Based Depth-first Proof-number Search

• GHI — Graph History Interaction

• HH — History Heuristic

• HW — Heuristic Weak

• ID — Iterative Deepening

• MCTS — Monte Carlo Tree Search

• MO — Move Ordering

• NS — NegaScout

• MPN — Most Proving Node

• PNS — Proof-number Search

• PN — Proof number

• PV — Principal Variation

• TT — Transposition Table

55



56



A. Documentation of Waltz

Waltz consists of the library for searching for best moves (described in Sec-
tion A.3), the program tzaar that loads the board from a file and starts the
search (Section A.2) and the Python web client for communication with Boitea-
jeux.net (Section A.1). For simple building of the project, a Makefile is provided.

The source code of Waltz can be downloaded from our website [23].

A.1 Python Web Client for Boiteajeux.net

Web client for communicating with the website Boiteajeux.net is written in
Python. It downloads a page from BAJ and looks for a game in which Waltz is
on turn. When such a game is found the client downloads the page with board
and calls the function PlayGame.

Function PlayGame has a parameter page containing HTML code of the page
with board. From the HTML code it parses a position, converts it to the board
representation (described in Section A.2.1) and saves it to a file. Then it calls
the program tzaar and waits until the computation is done. Finally it loads best
moves from a file and executes them on BAJ (via HTTP POST requests).

The client also looks for an invitation for playing—one can start a game with
Waltz by creating a new game and adding the robot’s username in the field
Guests. The client sends email to a given recipient when an exception occurs,
and every day after midnight it sends statistics of searches done during the day.

Note that before using the client for BAJ, we have to configure it. That
means, inside the Python code, fill the robot’s username and password, an email
where to send error messages and daily outputs, and directories where is Waltz
located and where to save positions and outputs.

A.2 Program tzaar

The program tzaar written in C is quite simple. Given a file with a position
in Tzaar it initializes arrays and variables with a board representation that are
in the library. Then it calls function GetBestMove in lib for searching for best
moves and saves returned moves to a file.

The files and other options are given via command line arguments:

• -a N or --ai N — set the algorithm number N (see lib.h). The default AI
number is in constant MAINAI in lib.h (it is AI used by the expert robot).

• -b FILE or --bestmove=FILE — search for best moves in a position stored
in FILE and then save best moves into this file. An input file format is
described in Section A.2.1 and output file format in Section A.2.2. This is
a required option.

• -e FILE or --execute=FILE — execute best moves after searching for them
and then save the position to FILE. Default is not to save any position after
the search.
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• -t SECONDS or --timelimit=SECONDS — set the time limit of the search to
SECONDS. The default value is in the constant AITIMELIMIT (30 seconds).

• -h or --help — print usage.

A.2.1 Board Representation and Input Files

Now we describe a board representation and then the format of input and output
files.

The Tzaar board is a hexagon with 5 fields on each side, but we cannot simply
store it in the memory as a hexagon. Thus it is sloped to be fit in the quadratic
array 9×9. In the library, one linear array of size 81 is used instead of a quadratic
array.

Example of the array containing fixed starting position (array members are
separated by spaces):

-1 1 1 1 1 100 100 100 100

-1 -2 2 2 2 -1 100 100 100

-1 -2 -3 3 3 -2 -1 100 100

-1 -2 -3 -1 1 -3 -2 -1 100

1 2 3 1 100 -1 -3 -2 -1

100 1 2 3 -1 1 3 2 1

100 100 1 2 -3 -3 3 2 1

100 100 100 1 -2 -2 -2 2 1

100 100 100 100 -1 -1 -1 -1 1

The number 100 stands for a field outside the board and also for the field
in the middle of the board. Empty fields with no piece have number 0. Other
numbers stand for different types of pieces:

• 1 is a white Tott,

• 2 is a white Tzarra,

• 3 is a white Tzaar,

• -1 is a black Tott,

• -2 is a black Tzarra,

• -3 is a black Tzaar.

In this array, a player can move in six directions: horizontally left, or right,
vertically up, or down, and diagonally right and down, or left and up. The other
diagonal directions (right and up, left and down) are not possible.

The heights of stacks are in another array of the same size. Fields outside the
board and empty fields have stack height zero. Example for the fixed starting
position:

1 1 1 1 1 0 0 0 0

1 1 1 1 1 1 0 0 0

1 1 1 1 1 1 1 0 0
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1 1 1 1 1 1 1 1 0

1 1 1 1 0 1 1 1 1

0 1 1 1 1 1 1 1 1

0 0 1 1 1 1 1 1 1

0 0 0 1 1 1 1 1 1

0 0 0 0 1 1 1 1 1

In the lib, there is also an array with names of fields ("-" is a field outside
the board):

"A1", "B1", "C1", "D1", "E1", "-" , "-" , "-" , "-" ,

"A2", "B2", "C2", "D2", "E2", "F1", "-" , "-" , "-" ,

"A3", "B3", "C3", "D3", "E3", "F2", "G1", "-" , "-" ,

"A4", "B4", "C4", "D4", "E4", "F3", "G2", "H1", "-" ,

"A5", "B5", "C5", "D5", "-" , "F4", "G3", "H2", "I1",

"-" , "B6", "C6", "D6", "E5", "F5", "G4", "H3", "I2",

"-" , "-" , "C7", "D7", "E6", "F6", "G5", "H4", "I3",

"-" , "-" , "-" , "D8", "E7", "F7", "G6", "H5", "I4",

"-" , "-" , "-" , "-" , "E8", "F8", "G7", "H6", "I5"

The input file for the program is a sequence of numbers separated by some
whitespace characters:

• first a player on turn is specified, i.e., robot’s color. Number 1 stands for
white, −1 for black,

• then there is the array with the board representation—81 integers with
types of pieces, or 0 as an empty field, or 100 as a field outside the board,

• the last is the array with stack heights (81 nonnegative integers).

Example with comments after ’%’ (they should be deleted before using the
file):

1 % our robot is white player

% pieces on the board

1 -1 -1 -1 -1 100 100 100 100

1 2 -2 -2 2 3 100 100 100

1 0 -3 0 -3 0 1 100 100

0 0 0 0 0 0 2 1 100

0 -3 0 0 100 0 3 0 1

100 -1 0 -3 0 -1 -3 2 -1

100 100 -2 0 0 1 -3 -2 -1

100 100 100 0 2 2 2 -2 -1

100 100 100 100 1 1 1 1 -1

% stack heights

1 1 1 1 1 0 0 0 0

1 1 1 1 1 3 0 0 0

1 0 1 0 1 0 1 0 0
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0 0 0 0 0 0 1 1 0

0 3 0 0 0 0 1 0 1

0 1 0 1 0 1 1 1 1

0 0 3 0 0 2 1 1 1

0 0 0 0 1 1 1 1 1

0 0 0 0 1 1 1 1 1

Note that in the format it does not matter on whitespace characters (spaces,
new lines and tabs). The file with numbers separated by a single space and no
new lines will is loaded successfully.

A.2.2 Output File with Best Moves

Now we describe how best moves are saved in the output file. On the first line,
there is the first move of a turn. It is saved as the name of the field from which
a player moves a stack, and the name of the field where the player captured an
opponent’s stack (the names are separated by a space).

On the second line, there is an integer specifying what is the second move.
Number -2 stands for no move (in the case of the first turn of white player, or
win after the first move), -1 stands for a pass move, 0 for a stacking move, and
1 for a capture. In the last two cases, names of two fields follow, the first is the
field from which a stack is moved, and the second is the field to which the stack
is moved.

On the third line, there is some information about the search, namely the
search duration in seconds (with three decimal places) and the returned value.

Example of a capture move and a stacking move:

G4 C6

0 F2 F1

33.303 33319

Example of a capture and a pass move (the returned value 2 000 000 000 means
that Waltz is going to win):

H2 D1

-1

2.742 2000000000

A.2.3 Module main

The module main contains function main which parses command line arguments
using the getopt library and calls ProcessPosition which loads position. Then
it calls GetBestMove in lib and finally it saves the result.

A.2.4 Module saveload

The module saveload contains functions for loading and saving positions in the
format described in Section A.2.1 and a function for saving best moves in the
format described in Section A.2.2. Function SaveWholePosition save all infor-
mation about the position, including counts of pieces according to a type, the
zone of control, but this function is not used by Waltz.
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A.3 Library lib

The library lib contains the computation part of the program and it is also
written in C (standard C99). For searching for best moves the algorithms Alpha-
beta and Depth-first Proof-number Search (DFPNS) are implemented. There
are also auxiliary functions for generating, executing and reverting moves. It is
possible to choose between different versions of the algorithms, for example there
are versions for beginners and intermediate players.

A.3.1 Arrays and Fields for Position Properties

For the current position representation there are arrays board and stackHeights

of size 81 with the same format as described in Section A.2.1. The variable player
is 1 when white is on turn and -1 when black is on turn. Since the turn of a player
consists of two moves, the variable moveNumber determines which phase of a turn
is: 1 is the first phase (a capture move) and 2 is the second (capture, stack, or
pass).

In the variable turnNumber, there is the number of turns from the root position
of the search (starting 1)—this is different from the number of turns in the whole
game which is not known to Waltz. Moves are stored in the array history.

There are some variables and arrays for storing information about the current
position that can be counted directly from arrays board and stackHeights, but
that would be very slow. The array counts contains the number of stacks alive
(visible) for each piece type, the variable stoneSum is the sum of stacks on the
board and it is used by the Iterative Deepening.

The variable value is the value of the current position determined by the
evaluation function or by a search. The variable materialValue is counted by
the part of the evaluation function that is counted incrementally when executing
or reverting moves. The variable hash contains the value of the Zobrist hash
function for the current position and it is also counted incrementally.

The array highestStack of the size equal to the number of piece types con-
tains the height of the highest stack for each type. For incrementally maintaining
this array library uses the quadratic array countsByHeight that contains the
number of pieces for each type and height.

The array zoneOfControl contains for each piece type how many pieces of
that type can be captured with one move. This is used in the evaluation function
and for determining whether a player has any possible captures when he is on
turn and it is his first move. The array is updated also incrementally using the
array threatenByCounts of the size 81 which contains for each field how many
stacks can capture a stack on this field.

A.3.2 Module lib

The module lib is the main module of the library. It contains definitions of
structures, types, macros, global arrays and variables used throughout the library
(some of them are described in the previous section).

The function GetBestMove starts the search according to the chosen algorithm
and does the time estimation via the Iterative Deepening for the Alpha-beta based
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algorithms and for DFPNS via the estimation of the maximal number of nodes
that can be searched.

In the header file, types and basic macros are defined first. Constants for
properties of the game, types of AI (algorithms), and AI settings follows. The
structure for a move, global variables, and arrays are defined at the end.

A.3.3 Module moves

The module moves contains functions for generating, executing and reverting
moves. There are also support functions for deallocating memory (free a single
move or a linked list of moves), determining whether someone won in the current
position, updating the zone of control after executing or reverting a move and
converting between a field index and a field name (for example the field on index 3
has name D1).

Most of functions in this module are optimized to be as fast as possible,
because they are called many times during the search. Note that the functions for
generating moves are used for the first and the second move of a turn separately.

In the header file there are constants for the Move Ordering and arrays for
possible directions that are used in the functions for generating moves.

A.3.4 Module init

The module init has functions for initializing arrays and variables with infor-
mation about the current position. The counting of the hash value, the material
value (the part of the value of a position that is counted incrementally during
the search) and the zone of control is implemented here. Function InitBoard

prepares starting position according to the parameter setup (random, or fixed)
and calls other initialization functions, but it is not used by our robot.

Functions in this module are not optimized to be fast, because they are not
called during the search, only before it. The values of the parameter setup and
the fixed starting position are defined in the header file.

A.3.5 Module alphabeta

The module alphabeta contains functions that implement the Alpha-beta prun-
ing algorithm with its enhancements, functions for working with the Transposition
Table (TT) and static evaluation functions.

There are different Alpha-beta functions with different enhancements used:

• AlphaBeta — simple Alpha-beta with storing positions to TT,

• AlphaBetaPV — Alpha-beta with TT and the Principal Variation Move
(PV),

• AlphaBetaPVMO — Alpha-beta with TT, PV and the heuristic Move Order-
ing (MO),

• AlphaBetaMO — Alpha-beta only with the Move Ordering (without TT),
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• AlphaBetaPVMORandom — random Alpha-beta proposed in Section 2.1.3
with TT, PV and MO. It should be called only on the root of the search
tree.

• AlphaBetaPVMONegascout — Alpha-beta with TT, PV, MO and Negas-
cout,

• AlphaBetaPVMOHistory — Alpha-beta with TT, PV, MO and the History
Heuristic,

• AlphaBetaPVMOHistoryNegascout — Alpha-beta with TT, PV, MO, the
History Heuristic and the Negascout,

• AlphaBetaPVMOBeginner — Alpha-beta with TT, PV, MO and the begin-
ner static evaluation function,

• AlphaBetaPVMORandomBeginner — random Alpha-beta with TT, PV, MO
and the beginner static evaluation function. It should be called only on the
root of the search tree.

The Alpha-beta enhancement Iterative Deepening is implemented in the mod-
ule lib. The Transposition Table use the replacement scheme Two Big.

A.3.6 Module pns

The module pns contains the implementation of the Depth-first Proof-number
Search (DFPNS) with some enhancements and the Transposition Table (TT)
used by DFPNS (it differ from TT used by Alpha-beta).

There are different DFPNS functions with different enhancements used:

• dfpns — simple DFPNS without enhancements,

• dfpnsEpsTrick — DFPNS with the 1 + ε Trick,

• weakpns — Heuristic Weak DFPNS (one can modify it to Weak DFPNS
easily),

• dfpnsEvalBased — Evaluation Function Based DFPNS,

• dfpnsWeakEpsEval — Heuristic Weak DFPNS with the 1+ε Trick and the
Evaluation Function Based enhancement,

• dfpnsDynWideningEpsEval — DFPNS with the Dynamic Widening, the
1 + ε Trick and Evaluation Function Based enhancement,

Constants for the enhancements are in the header file. The Transposition
Table for DFPNS also use the scheme Two Big.
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A.3.7 File hashedpositions.h

This header file contains data for the Zobrist hashing. There is a three dimension-
al array HashedPositions of unsigned 64bit integers (type thash) that contains
random numbers for each combination of a field, a piece (or an empty field) and
a stack height that can occur on the board. Impossible combinations have value
zero.

The array is indexed in this way: HashedPosition[field][pieceType]

[stackHeight] where field is an index in the array board and it is in range
from 0 to 80, pieceType is the value from the array board plus three (the value
ranges from -3 to 3) and stackHeight is the height of a stack if there is any, or
zero otherwise. Note that for fields outside the board, the values are not used.
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