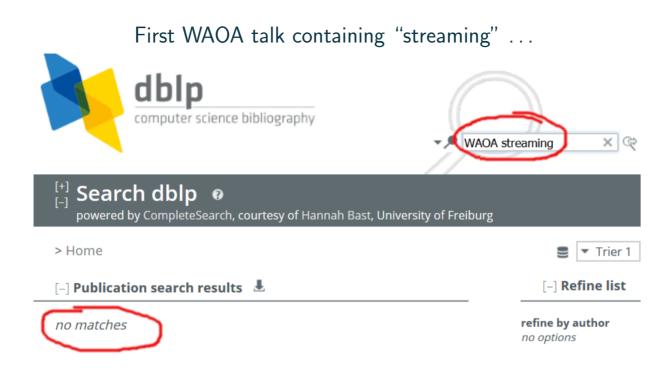
Streaming Algorithms for Bin Packing and Vector Scheduling

Graham Cormode and Pavel Veselý University of Warwick

WAOA 2019, Munich

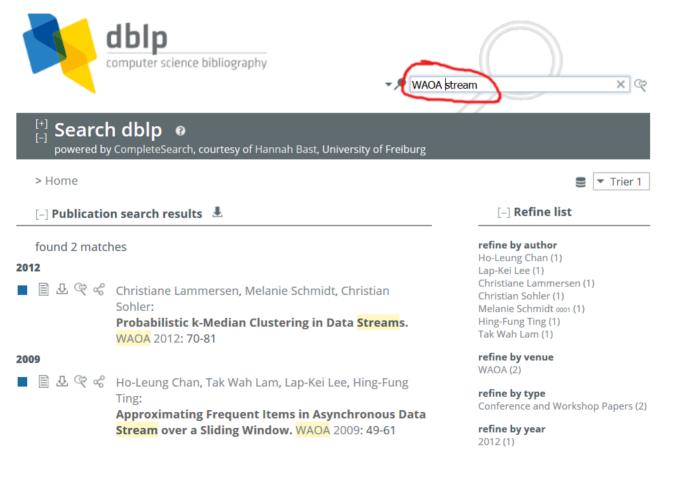
Powered by BeamerikZ

First WAOA talk containing "streaming" ...



First WAOA talk containing "streaming"

... but not the first one on "data streams"



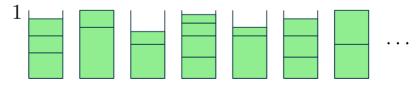
Overview

Overview

Connecting

Big Data Algorithms

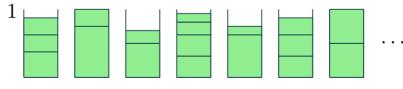
& Combinatorial Optimization



Overview

Connecting

Big Data Algorithms



This talk's focus:

streaming algorithms

packing and scheduling

• One pass over data w/ limited memory

• One pass over data w/ limited memory

Streaming Algorithm

- receives data in a stream, item by item
- uses memory sublinear in N = stream length

• One pass over data w/ limited memory

Streaming Algorithm

- receives data in a stream, item by item
- uses memory sublinear in N = stream length
- at the end, computes approximate answer

• One pass over data w/ limited memory

Streaming Algorithm

- receives data in a stream, item by item
- uses memory sublinear in N = stream length
- at the end, computes approximate answer

Note: cannot output a packing / schedule

 \Rightarrow estimate optimal cost (+ output template of a solution)

• One pass over data w/ limited memory

Streaming Algorithm

- receives data in a stream, item by item
- uses memory sublinear in N = stream length
- at the end, computes approximate answer

Note: cannot output a packing / schedule

- \Rightarrow estimate optimal cost (+ output template of a solution)
- Challenges: N
 - N very large
 - Stream ordered arbitrarily
 - No random access to data

• One pass over data w/ limited memory

Streaming Algorithm

- receives data in a stream, item by item
- uses memory sublinear in N = stream length
- at the end, computes approximate answer

Note: cannot output a packing / schedule

- \Rightarrow estimate optimal cost (+ output template of a solution)
- Challenges:
- *N* very large
 - Stream ordered arbitrarily
 - No random access to data

Trade-off: space vs. accuracy of the estimate

• One pass over data w/ limited memory

Streaming Algorithm

- receives data in a stream, item by item
- uses memory sublinear in N = stream length
- at the end, computes approximate answer

Note: cannot output a packing / schedule

- \Rightarrow estimate optimal cost (+ output template of a solution)
- Challenges:
- *N* very large
 - Stream ordered arbitrarily
 - No random access to data

Trade-off: space vs. accuracy of the estimate

How to summarize the input?

• One pass over data w/ limited memory

Streaming Algorithm

- receives data in a stream, item by item
- uses memory sublinear in N = stream length
- at the end, computes approximate answer

Note: cannot output a packing / schedule

- \Rightarrow estimate optimal cost (+ output template of a solution)
- Challenges:
- *N* very large
- Stream ordered arbitrarily
- No random access to data

\neq online

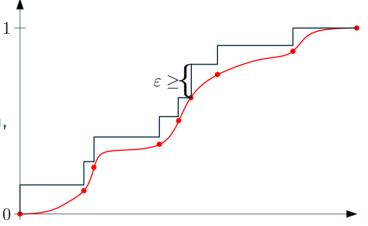
no need to make online decisions about the solution

Trade-off: space vs. accuracy of the estimate

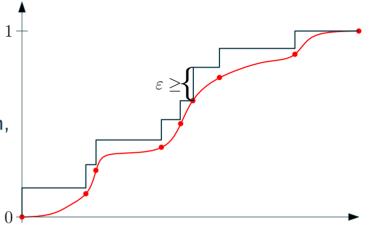
How to summarize the input?

- most frequent items,
- # of distinct items,

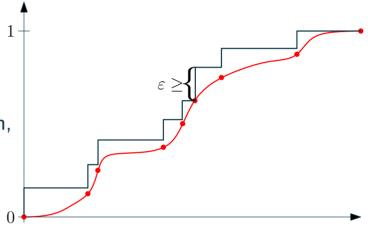
- most frequent items,
- # of distinct items,
- approximate median = .5-quantile,
 - or any $\phi\text{-quantile}$ for $\phi\in[0,1]\text{,}$
 - = $\phi \cdot N$ -th largest item,
- approx. cumulative distribution function, $\operatorname{cdf}_{\mathcal{A}}(x) = \frac{\{a \in \mathcal{A} \mid a \leq x\}}{N}$



- most frequent items,
- # of distinct items,
- approximate median = .5-quantile,
 - or any $\phi\text{-quantile}$ for $\phi\in[0,1]\text{,}$
 - = $\phi \cdot N$ -th largest item,
- approx. cumulative distribution function, $\operatorname{cdf}_{A}(x) = \frac{\{a \in A \mid a \leq x\}}{N}$
- some graph problems,
- submodular maximization,



- most frequent items,
- # of distinct items,
- approximate median = .5-quantile,
 or any φ-quantile for φ ∈ [0, 1],
 = φ ⋅ N-th largest item,
 - approx. cumulative distribution function, $\operatorname{cdf}_{A}(x) = \frac{\{a \in A \mid a \leq x\}}{N}$
 - some graph problems,
 - submodular maximization,



1

Bin Packing:

• Input: items of size in [0, 1]



. . .

- Goal: pack into min. number of bins of capacity 1
- Offline: $OPT + O(\log OPT)$ bins in poly-time [Hoberg, Rothvoss '17]

1

Bin Packing:

• Input: items of size in [0, 1]

- Goal: pack into min. number of bins of capacity 1
- Offline: $OPT + O(\log OPT)$ bins in poly-time [Hoberg, Rothvoss '17]

Streaming Algorithm $1 + \varepsilon$ -approximation in space $\widetilde{\mathcal{O}}(\frac{1}{\varepsilon})$

Essentially best possible

1

Bin Packing:

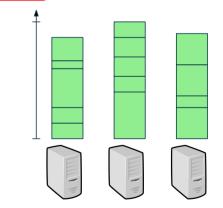
- Input: items of size in [0, 1]
- Goal: pack into min. number of bins of capacity 1
- Offline: $OPT + O(\log OPT)$ bins in poly-time [Hoberg, Rothvoss '17]

Streaming Algorithm $1 + \varepsilon$ -approximation in space $\widetilde{\mathcal{O}}(\frac{1}{\varepsilon})$ Essentially best possible

Makespan Scheduling

- Input: jobs with processing time
- Goal: assign jobs to machines to minimize makespan

= maximum load over all machines



Bin Packing:

- Input: items of size in [0, 1]
- Goal: pack into min. number of bins of capacity 1
- Offline: $OPT + O(\log OPT)$ bins in poly-time [Hoberg, Rothvoss '17]

Streaming Algorithm $1 + \varepsilon$ -approximation in space $\widetilde{\mathcal{O}}(\frac{1}{\varepsilon})$ Essentially best possible

Makespan Scheduling

- Input: jobs with processing time
- Goal: assign jobs to machines to minimize makespan

= maximum load over all machines

• $1 + \varepsilon$ -approximation (rounding & DP)

Bin Packing:

• Input: items of size in [0, 1]

• Offline: OPT + O(log OPT) bins in poly-time [Hoberg, Rothvoss '17]

Streaming Algorithm $1 + \varepsilon$ -approximation in space $\widetilde{\mathcal{O}}(\frac{1}{\varepsilon})$

Essentially best possible

Vector Scheduling:

- Input: jobs characterized by *d*-dim. vectors
 - e.g.: processing time, memory or bandwidth requirements, etc.
- Goal: assign jobs to *m* identical machines to minimize makespan

= maximum load over all machines and dimensions

Bin Packing:

- Input: items of size in [0, 1]
- Goal: pack into min. number of bins of capacity 1
- Offline: OPT + O(log OPT) bins in poly-time [Hoberg, Rothvoss '17]

Streaming Algorithm $1 + \varepsilon$ -approximation in space $\widetilde{O}(\frac{1}{\varepsilon})$ Essentially best possible

Vector Scheduling:

- Input: jobs characterized by *d*-dim. vectors
 - e.g.: processing time, memory or bandwidth requirements, etc.
- Goal: assign jobs to m identical machines to minimize makespan

= maximum load over all machines and dimensions

Streaming Algorithm 2-approximation in space $\widetilde{\mathcal{O}}(d^2 \cdot m^3)$

- Input: items of size in [0, 1]
- Goal: pack into min. number of bins of capacity 1

- Input: items of size in [0, 1]
- Goal: pack into min. number of bins of capacity 1

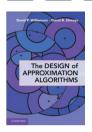
Textbook $1 + \varepsilon$ -approximation from [Fernandez de la Vega, Lueker '81]

• = solution with at most $(1 + \varepsilon) \cdot \mathsf{OPT} + \mathcal{O}_{\varepsilon}(1)$ bins

- Input: items of size in [0, 1]
- Goal: pack into min. number of bins of capacity 1

Textbook $1 + \varepsilon$ -approximation from [Fernandez de la Vega, Lueker '81]

- = solution with at most $(1 + \varepsilon) \cdot \mathsf{OPT} + \mathcal{O}_{\varepsilon}(1)$ bins
- Big items: size $> \varepsilon$: linear grouping

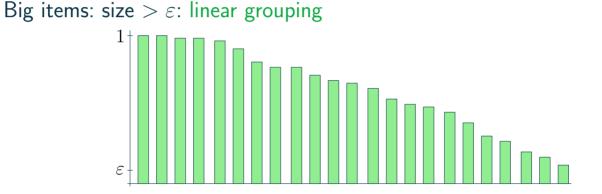


• Input: items of size in [0, 1]

• Goal: pack into min. number of bins of capacity 1

Textbook $1 + \varepsilon$ -approximation from [Fernandez de la Vega, Lueker '81]

• = solution with at most $(1 + \varepsilon) \cdot \mathsf{OPT} + \mathcal{O}_{\varepsilon}(1)$ bins

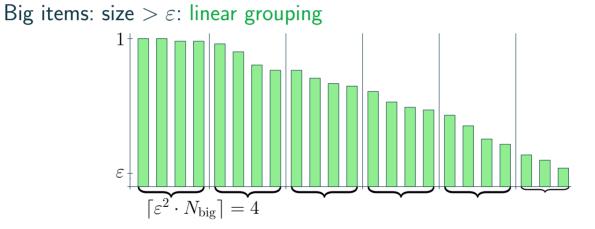


• Input: items of size in [0, 1]

• Goal: pack into min. number of bins of capacity 1

Textbook $1 + \varepsilon$ -approximation from [Fernandez de la Vega, Lueker '81]

• = solution with at most $(1 + \varepsilon) \cdot \mathsf{OPT} + \mathcal{O}_{\varepsilon}(1)$ bins



• Input: items of size in [0, 1]

• Goal: pack into min. number of bins of capacity 1

Textbook $1 + \varepsilon$ -approximation from [Fernandez de la Vega, Lueker '81]

- = solution with at most $(1 + \varepsilon) \cdot \mathsf{OPT} + \mathcal{O}_{\varepsilon}(1)$ bins

• Input: items of size in [0, 1]

• Goal: pack into min. number of bins of capacity 1

Textbook $1 + \varepsilon$ -approximation from [Fernandez de la Vega, Lueker '81]

- = solution with at most $(1 + \varepsilon) \cdot \mathsf{OPT} + \mathcal{O}_{\varepsilon}(1)$ bins
 - Big items: size > ε : linear grouping 1^{\dagger} ε_{\dagger} ε_{\bullet} ε_{\bullet} ε_{\bullet}

• \rightarrow instance with $\left\lceil \frac{1}{\varepsilon^2} \right\rceil$ item sizes only \rightarrow solve (nearly) optimally

Pavel Veselý

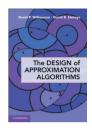
he DESIGN

ALGORITHM

- Input: items of size in [0, 1]
- Goal: pack into min. number of bins of capacity 1

Textbook $1 + \varepsilon$ -approximation from [Fernandez de la Vega, Lueker '81]

- = solution with at most $(1 + \varepsilon) \cdot \mathsf{OPT} + \mathcal{O}_{\varepsilon}(1)$ bins
 - Big items: size > ε : linear grouping 1^{\dagger} ε_{\dagger} ε_{\bullet} ε_{\bullet}
 - \rightarrow instance with $\left\lceil \frac{1}{\epsilon^2} \right\rceil$ item sizes only \rightarrow solve (nearly) optimally
- Small items: size $\leq \varepsilon$:
 - Fill in greedily



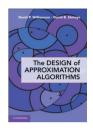
- Input: items of size in $\left[0,1\right]$
- Goal: pack into min. number of bins of capacity 1

Textbook $1 + \varepsilon$ -approximation from [Fernandez de la Vega, Lueker '81]

- = solution with at most $(1 + \varepsilon) \cdot \mathsf{OPT} + \mathcal{O}_{\varepsilon}(1)$ bins
 - Big items: size > ε : linear grouping 1^{\dagger} ε_{\dagger} ε_{\bullet} ε_{\bullet}
 - \rightarrow instance with $\left\lceil \frac{1}{\varepsilon^2} \right\rceil$ item sizes only \rightarrow solve (nearly) optimally
- Small items: size $\leq \varepsilon$:
 - Fill in greedily

Pavel Veselý

Streaming Algs. for Bin Packing and Vector Scheduling 6 / 13



- Input: items of size in $\left[0,1\right]$
- Goal: pack into min. number of bins of capacity 1

Textbook $1 + \varepsilon$ -approximation from [Fernandez de la Vega, Lueker '81]

- = solution with at most $(1 + \varepsilon) \cdot \mathsf{OPT} + \mathcal{O}_{\varepsilon}(1)$ bins
 - Big items: size > ε : linear grouping 1^{\dagger} ε_{\pm} ε_{\pm}
 - \rightarrow instance with $\left\lceil \frac{1}{\varepsilon^2} \right\rceil$ item sizes only \rightarrow solve (nearly) optimally
- Small items: size $\leq \varepsilon$:
 - Fill in greedily

- Input: items of size in $\left[0,1\right]$
- Goal: pack into min. number of bins of capacity 1

Textbook $1 + \varepsilon$ -approximation from [Fernandez de la Vega, Lueker '81]

- = solution with at most $(1 + \varepsilon) \cdot \mathsf{OPT} + \mathcal{O}_{\varepsilon}(1)$ bins
 - - \rightarrow instance with $\left\lceil \frac{1}{\varepsilon^2} \right\rceil$ item sizes only \rightarrow solve (nearly) optimally
- Small items: size $\leq \varepsilon$:
 - Fill in greedily

is only $ ightarrow$ solve (nearly) optimally									

- Input: items of size in $\left[0,1\right]$
- Goal: pack into min. number of bins of capacity 1

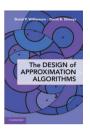
Textbook $1 + \varepsilon$ -approximation from [Fernandez de la Vega, Lueker '81]

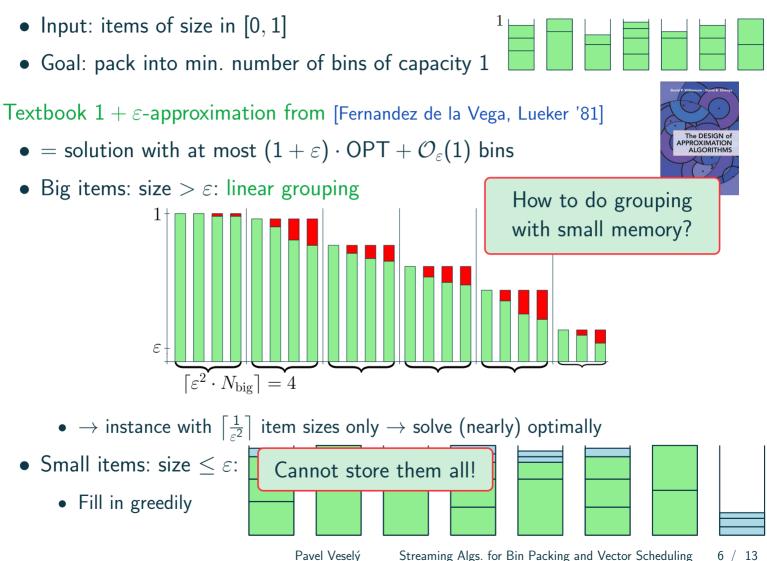
- = solution with at most $(1 + \varepsilon) \cdot \mathsf{OPT} + \mathcal{O}_{\varepsilon}(1)$ bins
 - Big items: size > ε : linear grouping 1^{\dagger} ε_{\dagger} ε_{\bullet} ε_{\bullet}
 - \rightarrow instance with $\left\lceil \frac{1}{\varepsilon^2} \right\rceil$ item sizes only \rightarrow solve (nearly) optimally
- Small items: size $\leq \varepsilon$:
 - Fill in greedily

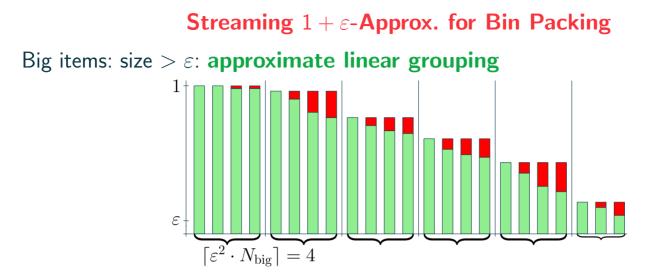
es only $ ightarrow$ solve (nearly) optimally									

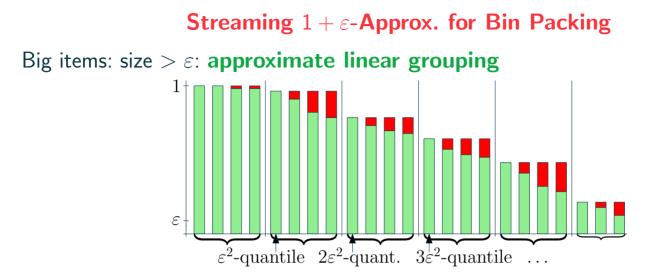
Pavel Veselý

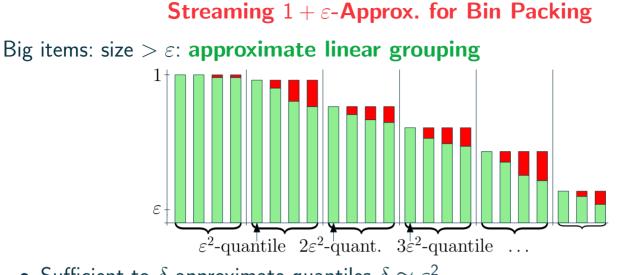
Streaming Algs. for Bin Packing and Vector Scheduling $-6\ /\ 13$



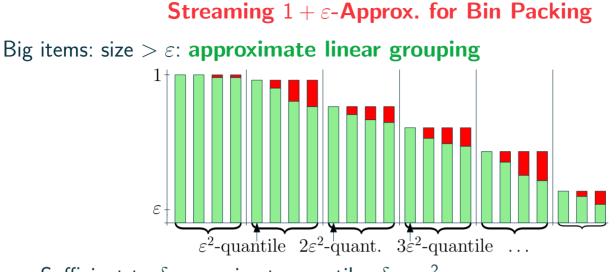




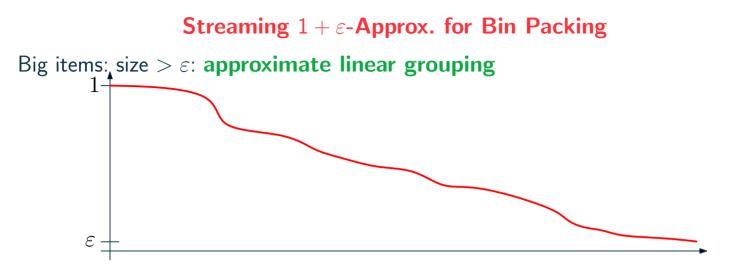




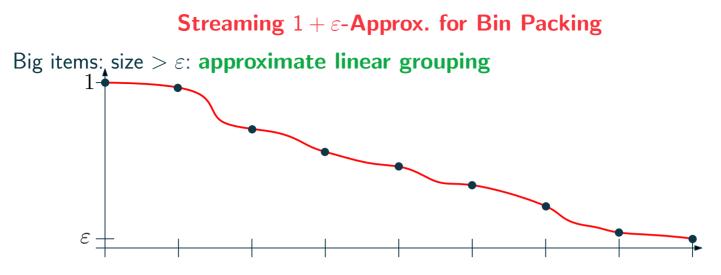
- Sufficient to $\delta\text{-approximate quantiles }\delta\approx\varepsilon^2$
 - δ -approx. ϕ -quantile = ($\phi \pm \delta$)*N*-th largest item



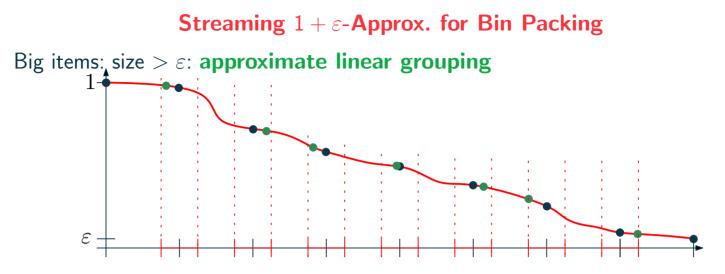
- Sufficient to $\delta\text{-approximate quantiles }\delta\approx\varepsilon^2$
 - δ -approx. ϕ -quantile = ($\phi \pm \delta$)N-th largest item
- quantile summary w/ space $\mathcal{O}(\frac{1}{\delta} \cdot \log \delta N)$ [Greenwald & Khanna '01]
 - deterministic comparison-based



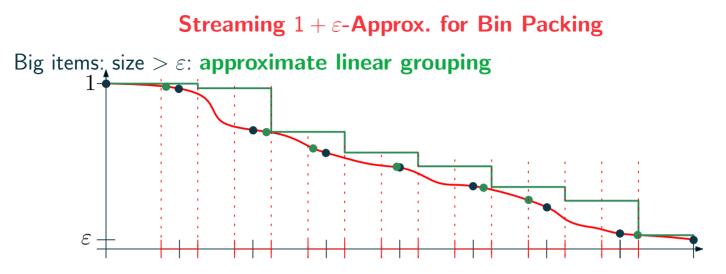
- Sufficient to $\delta\text{-approximate quantiles }\delta\approx\varepsilon^2$
 - δ -approx. ϕ -quantile = $(\phi \pm \delta)N$ -th largest item
- quantile summary w/ space $\mathcal{O}(\frac{1}{\delta} \cdot \log \delta N)$ [Greenwald & Khanna '01]
 - deterministic comparison-based



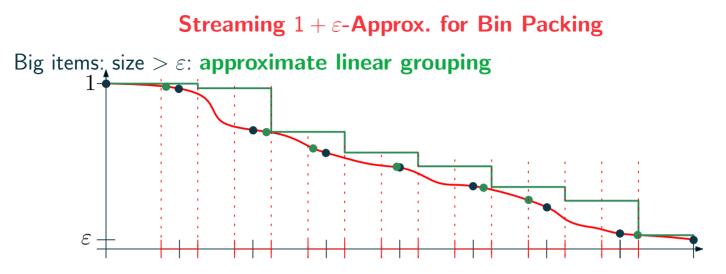
- Sufficient to $\delta\text{-approximate quantiles }\delta\approx\varepsilon^2$
 - δ -approx. ϕ -quantile = $(\phi \pm \delta)N$ -th largest item
- quantile summary w/ space $\mathcal{O}(\frac{1}{\delta} \cdot \log \delta N)$ [Greenwald & Khanna '01]
 - deterministic comparison-based



- Sufficient to $\delta\text{-approximate quantiles }\delta\approx\varepsilon^2$
 - δ -approx. ϕ -quantile = ($\phi \pm \delta$)N-th largest item
- quantile summary w/ space $\mathcal{O}(\frac{1}{\delta} \cdot \log \delta N)$ [Greenwald & Khanna '01]
 - deterministic comparison-based

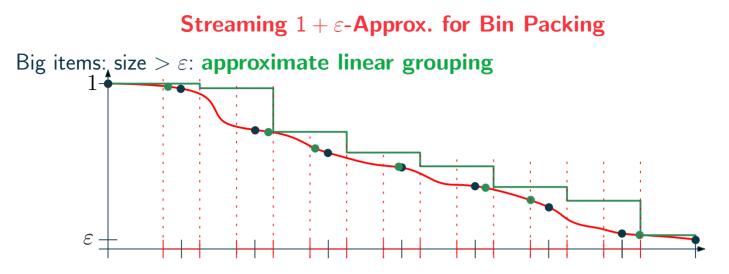


- Sufficient to $\delta\text{-approximate quantiles }\delta\approx\varepsilon^2$
 - δ -approx. ϕ -quantile = ($\phi \pm \delta$)N-th largest item
- quantile summary w/ space $\mathcal{O}(\frac{1}{\delta} \cdot \log \delta N)$ [Greenwald & Khanna '01]
 - deterministic comparison-based



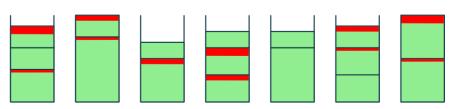
- Sufficient to $\delta\text{-approximate quantiles }\delta\approx\varepsilon^2$
 - δ -approx. ϕ -quantile = $(\phi \pm \delta)$ *N*-th largest item
- quantile summary w/ space $\mathcal{O}(\frac{1}{\delta} \cdot \log \delta N)$ [Greenwald & Khanna '01]
 - deterministic comparison-based

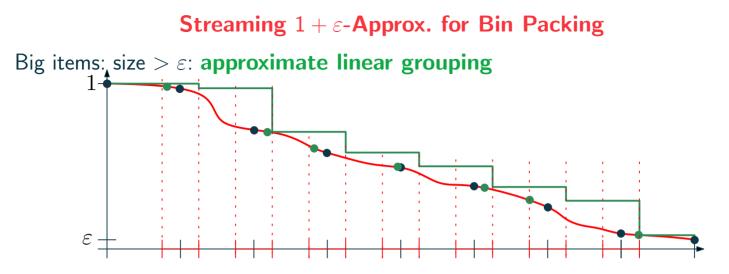
- sum their sizes
- fill in fractionally



- Sufficient to $\delta\text{-approximate quantiles }\delta\approx\varepsilon^2$
 - δ -approx. ϕ -quantile = $(\phi \pm \delta)$ *N*-th largest item
- quantile summary w/ space $\mathcal{O}(\frac{1}{\delta} \cdot \log \delta N)$ [Greenwald & Khanna '01]
 - deterministic comparison-based

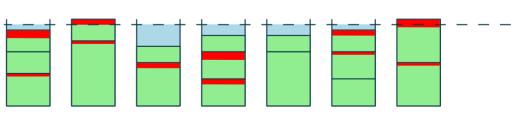
- sum their sizes
- fill in fractionally

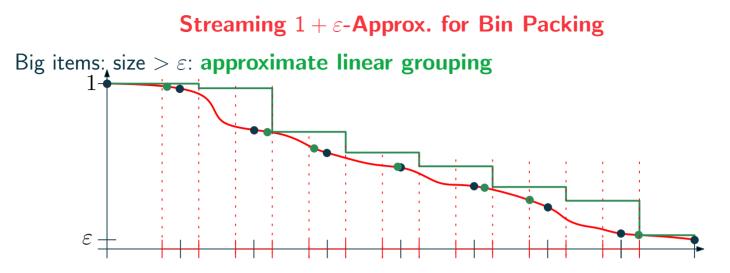




- Sufficient to $\delta\text{-approximate quantiles }\delta\approx\varepsilon^2$
 - δ -approx. ϕ -quantile = $(\phi \pm \delta)$ *N*-th largest item
- quantile summary w/ space $\mathcal{O}(\frac{1}{\delta} \cdot \log \delta N)$ [Greenwald & Khanna '01]
 - deterministic comparison-based

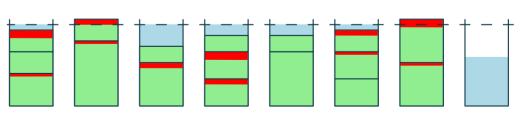
- sum their sizes
- fill in fractionally

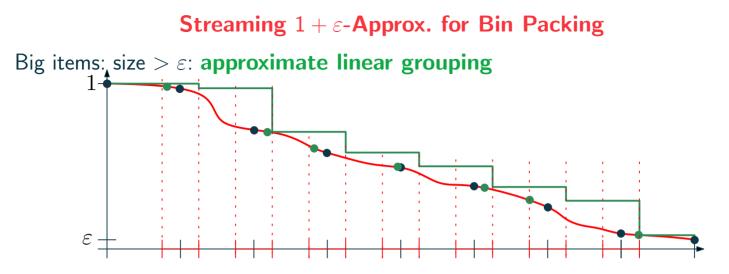




- Sufficient to $\delta\text{-approximate quantiles }\delta\approx\varepsilon^2$
 - δ -approx. ϕ -quantile = $(\phi \pm \delta)$ *N*-th largest item
- quantile summary w/ space $\mathcal{O}(\frac{1}{\delta} \cdot \log \delta N)$ [Greenwald & Khanna '01]
 - deterministic comparison-based

- sum their sizes
- fill in fractionally





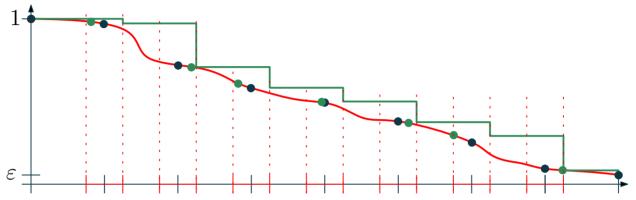
- Sufficient to $\delta\text{-approximate quantiles }\delta\approx\varepsilon^2$
 - δ -approx. ϕ -quantile = $(\phi \pm \delta)$ *N*-th largest item
- quantile summary w/ space $\mathcal{O}(\frac{1}{\delta} \cdot \log \delta N)$ [Greenwald & Khanna '01]
 - deterministic comparison-based

- sum their sizes
- fill in fractionally

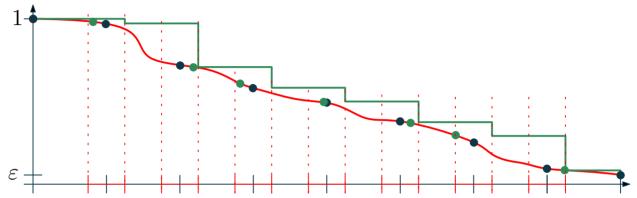
 $\Rightarrow 1 + \varepsilon$ -approx. for BIN PACKING in space $\mathcal{O}(\frac{1}{\varepsilon^2} \cdot \log \varepsilon \mathsf{OPT})$

- $1 + \varepsilon$ -approx. for BIN PACKING in space $\mathcal{O}(\frac{1}{\varepsilon^2} \cdot \log \varepsilon \mathsf{OPT})$
 - by quantiles with precision $\approx \varepsilon^2$

- $1 + \varepsilon$ -approx. for BIN PACKING in space $\mathcal{O}(\frac{1}{\varepsilon^2} \cdot \log \varepsilon \mathsf{OPT})$
 - by quantiles with precision $pprox arepsilon^2$

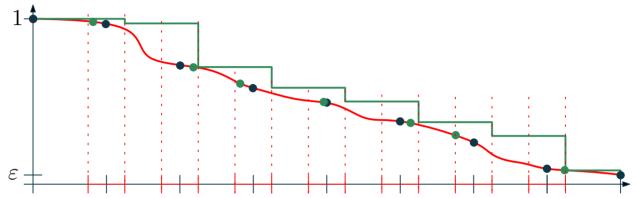


- $1 + \varepsilon$ -approx. for BIN PACKING in space $\mathcal{O}(\frac{1}{\varepsilon^2} \cdot \log \varepsilon \mathsf{OPT})$
 - by quantiles with precision $pprox arepsilon^2$



• too much precision for small items

- $1 + \varepsilon$ -approx. for BIN PACKING in space $\mathcal{O}(\frac{1}{\varepsilon^2} \cdot \log \varepsilon \mathsf{OPT})$
 - by quantiles with precision $\approx \varepsilon^2$



• too much precision for small items

Geometric grouping [Karmarkar, Karp '82]

- Split big items into $\lceil \log_2 \frac{1}{\varepsilon} \rceil$ size groups: $(\frac{1}{2}, 1], (\frac{1}{4}, \frac{1}{2}], \ldots$
- Use quantile summary for each group with precision $\approx \varepsilon$
- \Rightarrow space $\mathcal{O}(\frac{1}{\varepsilon} \cdot \log \frac{1}{\varepsilon} \cdot \log \mathsf{OPT})$

Yes! If . . .

- ... items drawn from a bounded-size universe U
 - space $\mathcal{O}(\frac{1}{\varepsilon} \cdot \log \frac{1}{\varepsilon} \cdot \log |U|)$ using a quantile summary from [Shrivastava *et al.* '04]

Yes! If ...

- ... items drawn from a bounded-size universe U
 - space $\mathcal{O}(\frac{1}{\varepsilon} \cdot \log \frac{1}{\varepsilon} \cdot \log |U|)$ using a quantile summary from [Shrivastava *et al.* '04]
- . . . randomization allowed (wrong answer w/ probability γ)
 - space $\mathcal{O}(\frac{1}{\varepsilon} \cdot \log \frac{1}{\varepsilon} \cdot \log \log \frac{\log \frac{1}{\varepsilon}}{\gamma})$ using a quantile summary from [Karnin *et al.* '16]

Yes! If ...

- ... items drawn from a bounded-size universe U
 - space $\mathcal{O}(\frac{1}{\varepsilon} \cdot \log \frac{1}{\varepsilon} \cdot \log |U|)$ using a quantile summary from [Shrivastava *et al.* '04]
- . . . randomization allowed (wrong answer w/ probability γ)
 - space $\mathcal{O}(\frac{1}{\varepsilon} \cdot \log \frac{1}{\varepsilon} \cdot \log \log \frac{\log \frac{1}{\varepsilon}}{\gamma})$ using a quantile summary from [Karnin *et al.* '16]

No, not much by a deterministic comparison-based algo.

• Streaming $1 + \varepsilon$ -approx. for BIN PACKING in space S

 \Rightarrow estimating rank w/ accuracy $\approx \varepsilon$ in space S

Yes! If ...

- ... items drawn from a bounded-size universe U
 - space $\mathcal{O}(\frac{1}{\varepsilon} \cdot \log \frac{1}{\varepsilon} \cdot \log |U|)$ using a quantile summary from [Shrivastava *et al.* '04]
- . . . randomization allowed (wrong answer w/ probability γ)
 - space $\mathcal{O}(\frac{1}{\varepsilon} \cdot \log \frac{1}{\varepsilon} \cdot \log \log \frac{\log \frac{1}{\varepsilon}}{\gamma})$ using a quantile summary from [Karnin *et al.* '16]

No, not much by a deterministic comparison-based algo.

• Streaming $1 + \varepsilon$ -approx. for BIN PACKING in space S

 \Rightarrow estimating rank w/ accuracy $\approx \varepsilon$ in space S

LB Ω(¹/_ε · log εN) for estimating rank / quantile summaries [Cormode & V. '19+]
 ⇒ LB Ω(¹/_ε · log OPT) for BIN PACKING

- Input: jobs characterized by *d*-dimensional vectors
- Goal: assign jobs to machines to minimize makespan

= maximum load over all machines and dimensions

• $1 + \varepsilon$ -approximation (more involved rounding & MIP) [Bansal *et al.* '16]

- Input: jobs characterized by *d*-dimensional vectors
- Goal: assign jobs to machines to minimize makespan

= maximum load over all machines and dimensions

- $1 + \varepsilon$ -approximation (more involved rounding & MIP) [Bansal *et al.* '16]
- Rescaling property: scaling every vector by $\alpha \Rightarrow$ scaling OPT by α

- Input: jobs characterized by *d*-dimensional vectors
- Goal: assign jobs to machines to minimize makespan

= maximum load over all machines and dimensions

- $1 + \varepsilon$ -approximation (more involved rounding & MIP) [Bansal *et al.* '16]
- Rescaling property: scaling every vector by $\alpha \Rightarrow$ scaling OPT by α Makespan Scheduling: d = 1
 - Rounding currently big jobs to powers of $1+\varepsilon$
 - Big jobs = bigger than ε times currently largest job

- Input: jobs characterized by *d*-dimensional vectors
- Goal: assign jobs to machines to minimize makespan

= maximum load over all machines and dimensions

- $1 + \varepsilon$ -approximation (more involved rounding & MIP) [Bansal *et al.* '16]
- Rescaling property: scaling every vector by $\alpha \Rightarrow$ scaling OPT by α Makespan Scheduling: d = 1
 - Rounding currently big jobs to powers of $1+\varepsilon$
 - Big jobs = bigger than ε times currently largest job
 - \Rightarrow streaming $1 + \varepsilon$ -approx. in space $\approx \log_{1+\varepsilon} \frac{1}{\varepsilon} = \mathcal{O}(\frac{1}{\varepsilon} \cdot \log \frac{1}{\varepsilon})$

- Input: jobs characterized by *d*-dimensional vectors
- Goal: assign jobs to machines to minimize makespan

= maximum load over all machines and dimensions

- $1 + \varepsilon$ -approximation (more involved rounding & MIP) [Bansal *et al.* '16]
- Rescaling property: scaling every vector by $\alpha \Rightarrow$ scaling OPT by α Makespan Scheduling: d=1
 - Rounding currently big jobs to powers of $1+\varepsilon$
 - Big jobs = bigger than ε times currently largest job
 - \Rightarrow streaming $1 + \varepsilon$ -approx. in space $\approx \log_{1+\varepsilon} \frac{1}{\varepsilon} = \mathcal{O}(\frac{1}{\varepsilon} \cdot \log \frac{1}{\varepsilon})$

Vector Scheduling: d > 1

- More intricate rounding from [Bansal et al. '16]:
 - Round to 0 coordinates small relatively to $\| m{v} \|_\infty$
 - Big jobs: round each dimension to power of $1 + \varepsilon \Rightarrow$ space $\widetilde{\mathcal{O}}(\frac{1}{\varepsilon})^d$
 - Small jobs: round relative to $\| v \|_\infty$

Pavel Veselý

Vector Scheduling: Aggregation Algorithm

Job vector v big if $\|v\|_{\infty} > \gamma \cdot$ (LB on OPT) for $\gamma \approx \varepsilon^2 / \log \frac{d}{\varepsilon}$

- \Rightarrow at most $d \cdot m/\gamma$ big vectors
- Store them all

Vector Scheduling: Aggregation Algorithm

Job vector v big if $\|v\|_{\infty} > \gamma \cdot$ (LB on OPT) for $\gamma \approx \varepsilon^2 / \log \frac{d}{\varepsilon}$

- \Rightarrow at most $d \cdot m/\gamma$ big vectors
- Store them all

Small vectors:

• combine into containers \approx big vectors

Job vector \mathbf{v} big if $\|\mathbf{v}\|_{\infty} > \gamma \cdot$ (LB on OPT) for $\gamma \approx \varepsilon^2 / \log \frac{d}{\varepsilon}$

- \Rightarrow at most $d \cdot m/\gamma$ big vectors
- Store them all

Small vectors:

- combine into containers \approx big vectors
- Maintain one open container
 - add incoming small vectors into it
 - close it once it becomes full & open a new one

Job vector \mathbf{v} big if $\|\mathbf{v}\|_{\infty} > \gamma \cdot$ (LB on OPT) for $\gamma \approx \varepsilon^2 / \log \frac{d}{\varepsilon}$

- \Rightarrow at most $d \cdot m/\gamma$ big vectors
- Store them all

Small vectors:

- combine into containers \approx big vectors
- Maintain one open container
 - add incoming small vectors into it
 - close it once it becomes full & open a new one

Analysis:

• Use the best schedule for big vectors: makespan $\leq \mathsf{OPT}$

Job vector \mathbf{v} big if $\|\mathbf{v}\|_{\infty} > \gamma \cdot$ (LB on OPT) for $\gamma \approx \varepsilon^2 / \log \frac{d}{\varepsilon}$

- \Rightarrow at most $d \cdot m/\gamma$ big vectors
- Store them all

Small vectors:

- combine into containers \approx big vectors
- Maintain one open container
 - add incoming small vectors into it
 - close it once it becomes full & open a new one

Analysis:

- $\bullet\,$ Use the best schedule for big vectors: makespan $\leq \mathsf{OPT}$
- Assign containers by an optimal online algorithm from [Im et al. '15]
 - Randomized & greedy assignment
 - Containers small \Rightarrow nearly balanced assignment \Rightarrow makespan $\leq (1 + \varepsilon) \cdot \mathsf{OPT}$

Job vector \mathbf{v} big if $\|\mathbf{v}\|_{\infty} > \gamma \cdot$ (LB on OPT) for $\gamma \approx \varepsilon^2 / \log \frac{d}{\varepsilon}$

- \Rightarrow at most $d \cdot m/\gamma$ big vectors
- Store them all

Small vectors:

- combine into containers \approx big vectors
- Maintain one open container
 - add incoming small vectors into it
 - close it once it becomes full & open a new one

Analysis:

- $\bullet\,$ Use the best schedule for big vectors: makespan $\leq \mathsf{OPT}$
- Assign containers by an optimal online algorithm from [Im et al. '15]
 - Randomized & greedy assignment
 - Containers small \Rightarrow nearly balanced assignment \Rightarrow makespan $\leq (1 + \varepsilon) \cdot \mathsf{OPT}$
- Combine the two cases: makespan $\leq \left(2 \frac{1}{m} + \varepsilon\right) \cdot \mathsf{OPT}$

Job vector \mathbf{v} big if $\|\mathbf{v}\|_{\infty} > \gamma \cdot$ (LB on OPT) for $\gamma \approx \varepsilon^2 / \log \frac{d}{\varepsilon}$

- \Rightarrow at most $d \cdot m/\gamma$ big vectors
- Store them all

Small vectors:

- combine into containers \approx big vectors
- Maintain one open container
 - add incoming small vectors into it
 - close it once it becomes full & open a new one

Analysis:

- $\bullet\,$ Use the best schedule for big vectors: makespan $\leq \mathsf{OPT}$
- Assign containers by an optimal online algorithm from [Im et al. '15]
 - Randomized & greedy assignment
 - Containers small \Rightarrow nearly balanced assignment \Rightarrow makespan $\leq (1 + \varepsilon) \cdot \mathsf{OPT}$
- Combine the two cases: makespan $\leq (2 \frac{1}{m} + \varepsilon) \cdot \mathsf{OPT}$

tight!

Bin Packing

- Streaming $1 + \varepsilon$ -approximation in space $\widetilde{\mathcal{O}}(\frac{1}{\varepsilon})$
- Tight up to $\mathcal{O}(\log \frac{1}{\varepsilon})$ factor by connection to quantile summaries

Bin Packing

- Streaming $1 + \varepsilon$ -approximation in space $\widetilde{\mathcal{O}}(\frac{1}{\varepsilon})$
- Tight up to $\mathcal{O}(\log \frac{1}{\varepsilon})$ factor by connection to quantile summaries
- Streaming $d + \varepsilon$ -approx. for VECTOR BIN PACKING in space $\widetilde{\mathcal{O}}(\frac{d}{\varepsilon})$

Bin Packing

- Streaming $1 + \varepsilon$ -approximation in space $\widetilde{\mathcal{O}}(\frac{1}{\varepsilon})$
- Tight up to $\mathcal{O}(\log \frac{1}{\varepsilon})$ factor by connection to quantile summaries
- Streaming $d + \varepsilon$ -approx. for VECTOR BIN PACKING in space $\widetilde{\mathcal{O}}(\frac{d}{\varepsilon})$

Vector Scheduling

• Rounding gives $1 + \varepsilon$ -approximation in space exceeding $\left(\frac{1}{\varepsilon}\right)^d$ [Bansal *et al.* '16]

Bin Packing

- Streaming $1 + \varepsilon$ -approximation in space $\widetilde{\mathcal{O}}(\frac{1}{\varepsilon})$
- Tight up to $\mathcal{O}(\log \frac{1}{\varepsilon})$ factor by connection to quantile summaries
- Streaming $d + \varepsilon$ -approx. for VECTOR BIN PACKING in space $\widetilde{\mathcal{O}}(\frac{d}{\varepsilon})$

Vector Scheduling

- Rounding gives $1 + \varepsilon$ -approximation in space exceeding $\left(\frac{1}{\varepsilon}\right)^d$ [Bansal *et al.* '16]
- Aggregation gives $2 \frac{1}{m} + \varepsilon$ -approximation in space $\mathcal{O}(\frac{1}{\varepsilon^2} \cdot d^2 \cdot m \cdot \log \frac{d}{\varepsilon})$

Bin Packing

- Streaming $1 + \varepsilon$ -approximation in space $\widetilde{\mathcal{O}}(\frac{1}{\varepsilon})$
- Tight up to $\mathcal{O}(\log \frac{1}{\varepsilon})$ factor by connection to quantile summaries
- Streaming $d + \varepsilon$ -approx. for VECTOR BIN PACKING in space $\widetilde{\mathcal{O}}(\frac{d}{\varepsilon})$

Vector Scheduling

- Rounding gives $1 + \varepsilon$ -approximation in space exceeding $\left(\frac{1}{\varepsilon}\right)^d$ [Bansal *et al.* '16]
- Aggregation gives $2 \frac{1}{m} + \varepsilon$ -approximation in space $\mathcal{O}(\frac{1}{\varepsilon^2} \cdot d^2 \cdot m \cdot \log \frac{d}{\varepsilon})$

Better analysis of aggregation algorithm?

O(1)-approx. in space poly(d)?

Bin Packing

- Streaming $1 + \varepsilon$ -approximation in space $\widetilde{\mathcal{O}}(\frac{1}{\varepsilon})$
- Tight up to $\mathcal{O}(\log \frac{1}{\varepsilon})$ factor by connection to quantile summaries
- Streaming $d + \varepsilon$ -approx. for VECTOR BIN PACKING in space $\widetilde{\mathcal{O}}(\frac{d}{\varepsilon})$

Vector Scheduling

- Rounding gives $1 + \varepsilon$ -approximation in space exceeding $\left(\frac{1}{\varepsilon}\right)^d$ [Bansal *et al.* '16]
- Aggregation gives $2 \frac{1}{m} + \varepsilon$ -approximation in space $\mathcal{O}(\frac{1}{\varepsilon^2} \cdot d^2 \cdot m \cdot \log \frac{d}{\varepsilon})$

Better analysis of aggregation algorithm?

O(1)-approx. in space poly(d)?

What about your favourite problem?

Bin Packing

- Streaming $1 + \varepsilon$ -approximation in space $\widetilde{\mathcal{O}}(\frac{1}{\varepsilon})$
- Tight up to $\mathcal{O}(\log \frac{1}{\varepsilon})$ factor by connection to quantile summaries
- Streaming $d + \varepsilon$ -approx. for VECTOR BIN PACKING in space $\widetilde{\mathcal{O}}(\frac{d}{\varepsilon})$

Vector Scheduling

- Rounding gives $1 + \varepsilon$ -approximation in space exceeding $\left(\frac{1}{\varepsilon}\right)^d$ [Bansal *et al.* '16]
- Aggregation gives $2 \frac{1}{m} + \varepsilon$ -approximation in space $\mathcal{O}(\frac{1}{\varepsilon^2} \cdot d^2 \cdot m \cdot \log \frac{d}{\varepsilon})$

Better analysis of aggregation algorithm?

O(1)-approx. in space poly(d)?

What about your favourite problem?

Streaming vs. Online

Streaming vs. Online

Problem	Streaming apx.	Competitive ratio LB	Competitive ratio UB
BIN PACKING	$1+\varepsilon$	1.542 [Balogh <i>et al.</i> '19]	
Vector Bin Packing	$d + \varepsilon$	$\Omega(d^{1-\varepsilon})$ [Azar <i>et al.</i> '13]	d + 0.7 [Garey <i>et al.</i> '76]
Makespan Scheduling	$1 + \varepsilon$	1.88 [Rudin '01]	1.92 [Fleischer & Wahl '00]
VECTOR SCHEDULING	2 (1 + ε)	$\Omega(\log d / \log \log d)$ [Im <i>et al.</i> '15]	$\mathcal{O}(\log d / \log \log d)$ [Im <i>et al.</i> '15]