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University of Warwick

WAOA 2019, Munich

Powered by BeamerikZ

https://www.mimuw.edu.pl/~mskrzypczak/projects/beamerikz/


First WAOA talk containing “streaming” . . .

. . . but not the first one on “data streams”
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Pavel Veselý Streaming Algs. for Bin Packing and Vector Scheduling 2 / 13



Streaming Model of Computation

• One pass over data w/ limited memory

Streaming Algorithm

• receives data in a stream, item by item

• uses memory sublinear in N = stream length

• at the end, computes approximate answer

Note: cannot output a packing / schedule

⇒ estimate optimal cost (+ output template of a solution)

Challenges: • N very large

• Stream ordered arbitrarily

• No random access to data

Trade-off: space vs. accuracy of the estimate

How to summarize the input?

no need to make online

decisions about the solution

6= online
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Pavel Veselý Streaming Algs. for Bin Packing and Vector Scheduling 3 / 13



Streaming Model of Computation

• One pass over data w/ limited memory

Streaming Algorithm

• receives data in a stream, item by item

• uses memory sublinear in N = stream length

• at the end, computes approximate answer

Note: cannot output a packing / schedule

⇒ estimate optimal cost (+ output template of a solution)

Challenges: • N very large

• Stream ordered arbitrarily

• No random access to data

Trade-off: space vs. accuracy of the estimate

How to summarize the input?

no need to make online

decisions about the solution

6= online

Pavel Veselý Streaming Algs. for Bin Packing and Vector Scheduling 3 / 13



Streaming Model of Computation

• One pass over data w/ limited memory

Streaming Algorithm

• receives data in a stream, item by item

• uses memory sublinear in N = stream length

• at the end, computes approximate answer

Note: cannot output a packing / schedule

⇒ estimate optimal cost (+ output template of a solution)

Challenges: • N very large

• Stream ordered arbitrarily

• No random access to data

Trade-off: space vs. accuracy of the estimate

How to summarize the input?

no need to make online

decisions about the solution

6= online
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Streaming Algorithms known for . . .

• most frequent items,

• # of distinct items,

• approximate median = .5-quantile,

• or any φ-quantile for φ ∈ [0, 1],

• = φ · N-th largest item,

• approx. cumulative distribution function,

1

0

ε ≥{

cdfA(x) =
{a ∈ A | a ≤ x}

N
• some graph problems,

• submodular maximization,

• . . .

What about other basic problems in combinatorial optimization?
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Our Results: Streaming Algorithms for . . .

Bin Packing: 1
. . .

• Input: items of size in [0, 1]

• Goal: pack into min. number of bins of capacity 1

• Offline: OPT +O(log OPT) bins in poly-time [Hoberg, Rothvoss ’17]

1 + ε-approximation in space Õ(1
ε)

Essentially best possible

Streaming Algorithm

Makespan Scheduling

• Input: jobs with processing time

• Goal: assign jobs to machines to minimize makespan

= maximum load over all machines

• 1 + ε-approximation (rounding & DP)

Vector Scheduling:

• Input: jobs characterized by d -dim. vectors

• e.g.: processing time, memory or bandwidth requirements, etc.

• Goal: assign jobs to m identical machines to minimize makespan

= maximum load over all machines and dimensions

2-approximation in space Õ(d2 ·m3)

Streaming Algorithm
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Bin Packing: Offline Approximation Scheme

1
. . .

• Input: items of size in [0, 1]

• Goal: pack into min. number of bins of capacity 1

Textbook 1 + ε-approximation from [Fernandez de la Vega, Lueker ’81]

• = solution with at most (1 + ε) · OPT +Oε(1) bins

• Big items: size > ε: linear grouping
1

ε

1

ε { { { { { {

dε2 ·Nbige = 4

1

ε { { { { { {

dε2 ·Nbige = 4

• → instance with
⌈

1
ε2

⌉
item sizes only → solve (nearly) optimally

• Small items: size ≤ ε:

• Fill in greedily

How to do grouping

with small memory?

Cannot store them all!
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Streaming 1 + ε-Approx. for Bin Packing

Big items: size > ε: approximate linear grouping
1

ε { { { { { {

dε2 ·Nbige = 4

1

ε { { { { { {

ε2-quantile 2ε2-quant. 3ε2-quantile . . .

• Sufficient to δ-approximate quantiles δ ≈ ε2

• δ-approx. φ-quantile = (φ± δ)N-th largest item

• quantile summary w/ space O(1
δ · log δN) [Greenwald & Khanna ’01]

• deterministic comparison-based

1

ε

1

ε

1

ε

1

ε

Small items

• sum their sizes

• fill in fractionally

εε

⇒ 1 + ε-approx. for Bin Packing in space O( 1
ε2
· log εOPT)
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Pavel Veselý Streaming Algs. for Bin Packing and Vector Scheduling 7 / 13



Streaming 1 + ε-Approx. for Bin Packing

Big items: size > ε: approximate linear grouping

1

ε { { { { { {

dε2 ·Nbige = 4

1

ε { { { { { {

ε2-quantile 2ε2-quant. 3ε2-quantile . . .

• Sufficient to δ-approximate quantiles δ ≈ ε2

• δ-approx. φ-quantile = (φ± δ)N-th largest item

• quantile summary w/ space O(1
δ · log δN) [Greenwald & Khanna ’01]

• deterministic comparison-based

1

ε

1

ε

1

ε

1

ε

Small items

• sum their sizes

• fill in fractionally

εε

⇒ 1 + ε-approx. for Bin Packing in space O( 1
ε2
· log εOPT)
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Streaming 1 + ε-Approx. for Bin Packing

1 + ε-approx. for Bin Packing in space O( 1
ε2
· log εOPT)

• by quantiles with precision ≈ ε2

1

ε

• too much precision for small items

Geometric grouping [Karmarkar, Karp ’82]

• Split big items into dlog2
1
εe size groups: (1

2, 1], (1
4,

1
2], . . .

• Use quantile summary for each group with precision ≈ ε

• ⇒ space O(1
ε · log 1

ε · log OPT)
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Streaming 1 + ε-Approx. for Bin Packing

Can we do better than O(1
ε · log 1

ε · log OPT)?

Yes! If . . .

• . . . items drawn from a bounded-size universe U

• space O(1
ε · log 1

ε · log |U |) using a quantile summary from [Shrivastava et al. ’04]

• . . . randomization allowed (wrong answer w/ probability γ)

• space O(1
ε · log 1

ε · log log
log 1

ε
γ ) using a quantile summary from [Karnin et al. ’16]

No, not much by a deterministic comparison-based algo.

• Streaming 1 + ε-approx. for Bin Packing in space S

⇒ estimating rank w/ accuracy ≈ ε in space S

• LB Ω(1
ε · log εN) for estimating rank / quantile summaries [Cormode & V. ’19+]

⇒ LB Ω(1
ε · log OPT) for Bin Packing
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Vector Scheduling: Rounding

• Input: jobs characterized by d -dimensional vectors

• Goal: assign jobs to machines to minimize makespan

= maximum load over all machines and dimensions

• 1 + ε-approximation (more involved rounding & MIP) [Bansal et al. ’16]

• Rescaling property: scaling every vector by α⇒ scaling OPT by α

Makespan Scheduling: d = 1

• Rounding currently big jobs to powers of 1 + ε

• Big jobs = bigger than ε times currently largest job

• ⇒ streaming 1 + ε-approx. in space ≈ log1+ε
1
ε = O(1

ε · log 1
ε)

Vector Scheduling: d > 1

• More intricate rounding from [Bansal et al. ’16]:

• Round to 0 coordinates small relatively to ‖v‖∞
• Big jobs: round each dimension to power of 1 + ε⇒ space Õ(1

ε)d

• Small jobs: round relative to ‖v‖∞
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Vector Scheduling: Aggregation Algorithm

Job vector v big if ‖v‖∞ > γ· (LB on OPT) for γ ≈ ε2/ log d
ε

• ⇒ at most d ·m/γ big vectors

• Store them all

Small vectors:

• combine into containers ≈ big vectors

• Maintain one open container

• add incoming small vectors into it

• close it once it becomes full & open a new one

Analysis:

• Use the best schedule for big vectors: makespan ≤ OPT

• Assign containers by an optimal online algorithm from [Im et al. ’15]

• Randomized & greedy assignment

• Containers small ⇒ nearly balanced assignment ⇒ makespan ≤ (1 + ε) · OPT

• Combine the two cases: makespan ≤ (2− 1
m + ε) · OPT tight!
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Pavel Veselý Streaming Algs. for Bin Packing and Vector Scheduling 11 / 13



Vector Scheduling: Aggregation Algorithm

Job vector v big if ‖v‖∞ > γ· (LB on OPT) for γ ≈ ε2/ log d
ε

• ⇒ at most d ·m/γ big vectors

• Store them all

Small vectors:

• combine into containers ≈ big vectors

• Maintain one open container

• add incoming small vectors into it

• close it once it becomes full & open a new one

Analysis:

• Use the best schedule for big vectors: makespan ≤ OPT

• Assign containers by an optimal online algorithm from [Im et al. ’15]

• Randomized & greedy assignment

• Containers small ⇒ nearly balanced assignment ⇒ makespan ≤ (1 + ε) · OPT

• Combine the two cases: makespan ≤ (2− 1
m + ε) · OPT tight!
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Conclusions & Open Problems

Bin Packing

• Streaming 1 + ε-approximation in space Õ(1
ε)

• Tight up to O(log 1
ε) factor by connection to quantile summaries

• Streaming d + ε-approx. for Vector Bin Packing in space Õ(dε )

Vector Scheduling

• Rounding gives 1 + ε-approximation in space exceeding
(

1
ε

)d
[Bansal et al. ’16]

• Aggregation gives 2− 1
m + ε-approximation in space O( 1

ε2
· d2 ·m · log d

ε )

Better analysis of aggregation algorithm?

O(1)-approx. in space poly(d)?

What about your favourite problem?

Thank You!
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Streaming vs. Online

Problem
Streaming
apx.

Competitive ratio LB Competitive ratio UB

Bin Packing 1 + ε 1.542 [Balogh et al. ’19] 1.578 [Balogh et al. ’18]
Vector Bin Packing d + ε Ω(d1−ε) [Azar et al. ’13] d + 0.7 [Garey et al. ’76]

Makespan Scheduling 1 + ε 1.88 [Rudin ’01] 1.92 [Fleischer & Wahl ’00]

Vector Scheduling 2 (1 + ε)
Ω(log d/ log log d)
[Im et al. ’15]

O(log d/ log log d)
[Im et al. ’15]
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