Streaming Facility Location in High Dimension via Geometric Hashing

Pavel Veselý (Charles University, Prague)

Artur Czumaj (Warwick)

Shaofeng Jiang (Peking)

Robert Krauthgamer (Weizmann)

Mingwei Yang (Peking)

Geometric streams

- Input: sequence of points \bigstar from \mathbb{R}^d
- Processed in a few passes using small memory
- Goal: estimate a statistic of the point set
 - e.g. diameter, **cost** of clustering, MST, matching, ...
 - solution can take space $\Omega(n)$

Geometric streams

- Input: sequence of points \uparrow from \mathbb{R}^d
- Processed in a few passes using small memory
- Goal: estimate a statistic of the point set
 - e.g. diameter, **cost** of clustering, MST, matching, ...
 - solution can take space $\Omega(n)$

Dynamic geometric streams: classical model [Indyk STOC '04]

- insertions & deletions
- points from $[\Delta]^d$ for integer $\Delta > 0$
- space ideally $poly(d \cdot \log \Delta)$
 - will ignore $poly(log(\Delta + n))$ factors in space

Geometric streams

- Input: sequence of points \uparrow from \mathbb{R}^d
- Processed in a few passes using small memory
- Goal: estimate a statistic of the point set
 - e.g. diameter, **cost** of clustering, MST, matching, ...
 - solution can take space $\Omega(n)$

Dynamic geometric streams: classical model [Indyk STOC '04]

- insertions & deletions
- points from $[\Delta]^d$ for integer $\Delta > 0$
- space ideally $poly(d \cdot \log \Delta)$
 - will ignore $poly(log(\Delta + n))$ factors in space

Often: "Algo. for insertion-only \Rightarrow Algo. for dynamic geometric streams" "Counterexample": diameter with poly(d) space [Indyk'03], [Agarwal,Sharathkumar'15]

Czumaj, Jiang, Krauthgamer, Veselý, Yang Stre

Low Dimension: space $\exp(d)$ High Dimension: space poly(d)

.

Low Dimension: space exp(d)

- O(1) or even $(1 + \varepsilon)$ -approximation e.g. for:
 - MST, TSP, and Steiner tree [Frahling,Indyk,Sohler '05]
 - *k*-median, *k*-means, Max-Cut, . . . [Frahling&Sohler '05]
 - Facility Location [Czumaj et al. '13]
 - Steiner Forest [Czumaj, Jiang, Krauthgamer, V. '22]
- typical space decompositions: grids/quadtree

I		

High Dimension: space poly(d)

Low Dimension: space exp(d)

- O(1) or even $(1 + \varepsilon)$ -approximation e.g. for:
 - MST, TSP, and Steiner tree [Frahling,Indyk,Sohler '05]
 - *k*-median, *k*-means, Max-Cut, . . . [Frahling&Sohler '05]
 - Facility Location [Czumaj et al. '13]
 - Steiner Forest [Czumaj, Jiang, Krauthgamer, V. '22]
- typical space decompositions: grids/quadtree

 	 	 +
	l	

High Dimension: space poly(d)

- Important case: $d = \Theta(\log n)$ (JL lemma)
- only $O(\log n)$ -approximation (or worse)
 - ratio $O(d \cdot \log \Delta)$ by tree embeddings [Indyk '04]
 - ratio $O(\log n)$ for MST and EMD [Chen, Jayaram,

Levi, Waingarten '22]

- lack of techniques for O(1)-approx.
 - tree embedding distorts distances by $\Omega(\log n)$

Low Dimension: space $\exp(d)$

- O(1) or even $(1 + \varepsilon)$ -approximation e.g. for:
 - MST, TSP, and Steiner tree [Frahling,Indyk,Sohler '05]
 - k-median, k-means, Max-Cut, ... [Frahling&Sohler '05]
 - Facility Location [Czumaj et al. '13]
 - Steiner Forest [Czumaj, Jiang, Krauthgamer, V. '22]
- typical space decompositions: grids/quadtree

 	 		 ++
		<mark> </mark> 	

High Dimension: space poly(d)

- Important case: $d = \Theta(\log n)$ (JL lemma)
- only $O(\log n)$ -approximation (or worse)
 - ratio $O(d \cdot \log \Delta)$ by tree embeddings [Indyk '04]
 - ratio $O(\log n)$ for MST and EMD [Chen, Jayaram,

Levi, Waingarten '22]

- lack of techniques for O(1)-approx.
 - tree embedding distorts distances by $\Omega(\log n)$
- exception: ratio $(1 + \varepsilon)$ for k-median and k-means
 - low space only for small k
 - [Braverman, Frahling, Lang, Sohler, Yang '17], [Song, Yang, Zhong '18]

Low Dimension: space exp(d)

- O(1) or even $(1 + \varepsilon)$ -approximation e.g. for:
 - MST, TSP, and Steiner tree [Frahling,Indyk,Sohler '05]
 - *k*-median, *k*-means, Max-Cut, . . . [Frahling&Sohler '05]
 - Facility Location [Czumaj et al. '13]
 - Steiner Forest [Czumaj, Jiang, Krauthgamer, V. '22]
- typical space decompositions: grids/quadtree

 		 +
	 <mark> </mark> 	

High Dimension: space poly(d)

- Important case: $d = \Theta(\log n)$ (JL lemma)
- only $O(\log n)$ -approximation (or worse)
 - ratio $O(d \cdot \log \Delta)$ by tree embeddings [Indyk '04]
 - ratio $O(\log n)$ for MST and EMD [Chen, Jayaram,

Levi, Waingarten '22]

- lack of techniques for O(1)-approx.
 - tree embedding distorts distances by $\Omega(\log n)$
- exception: ratio $(1 + \varepsilon)$ for k-median and k-means
 - low space only for small k
 - [Braverman, Frahling, Lang, Sohler, Yang '17], [Song, Yang, Zhong '18]
- Insertion-only setting:
 - Diameter et al.: ratio O(1) [Agarwal, Sharathkumar'15]
 - Width in any direction [Woodruff, Yasuda'22]

Czumaj, Jiang, Krauthgamer, Veselý, Yang

Euclidean Uniform Facility Location

Euclidean Uniform Facility Location

Czumaj, Jiang, Krauthgamer, Veselý, Yang

Streaming Facility Location in High Dimension

Euclidean Uniform Facility Location

This talk: unit facility cost $\mathfrak{f} = 1$

Czumaj, Jiang, Krauthgamer, Veselý, Yang

Streaming Facility Location in High Dimension

	# of passes	ratio	space	reference & notes
Previous work:	1	$O(d \cdot \log^2 \Delta)$	poly(d)	[Indyk '04]
	1	$\exp(d)$	$\exp(d)$	[Lammersen,Sohler '08]
	1	1 ⊥ c	exp(d)	only for $d = 2$
			cxp(u)	[Czumaj,Lammersen,Monemizadeh,Sohler '13]

	# of passes	ratio	space	reference & notes
Previous work:	1	$O(d \cdot \log^2 \Delta)$	poly(d)	[Indyk '04]
	1	$\exp(d)$	$\exp(d)$	[Lammersen,Sohler '08]
	1	1 + c	ovn(d)	only for $d = 2$
	I	$z \pm r$	exp(u)	[Czumaj,Lammersen,Monemizadeh,Sohler '13]
We wanted:	1	O(1)	poly(d)	

	# of passes	ratio	space	reference & notes
Previous work:	1	$O(d \cdot \log^2 \Delta)$	poly(d)	[Indyk '04]
	1	$\exp(d)$	$\exp(d)$	[Lammersen,Sohler '08]
	1	1	ovp(d)	only for $d = 2$
	T	3 ± 1	exp(u)	[Czumaj,Lammersen,Monemizadeh,Sohler '13]
We wanted:	1	<i>O</i> (1)	poly(d)	(still conjectured)
We got:	2	<i>O</i> (1)	poly(d)	*
	1 [†]	O(1)	poly(d)	*; 1^{\dagger} = random-order streams

	# of passes	ratio	space	reference & notes
Previous work:	1	$O(d \cdot \log^2 \Delta)$	poly(d)	[Indyk '04]
	1	$\exp(d)$	$\exp(d)$	[Lammersen,Sohler '08]
	1	1	exp(d)	only for $d = 2$
	T	$1 \perp c$	exp(u)	[Czumaj,Lammersen,Monemizadeh,Sohler '13]
We wanted:	1	O(1)	poly(d)	(still conjectured)
We got:	2	O(1)	poly(d)	*
	1^{\dagger}	O(1)	poly(d)	*; 1^{\dagger} = random-order streams
	1	$O(d^{1.5})$	poly(d)	*

• for $d = \Theta(\log n)$ (from JL lemma): improvement from ratio $\Theta(\log^3 n)$ [Indyk '04] to $\Theta(\log^{1.5} n)$

	# of passes	ratio	space	reference & notes
Previous work:	1	$O(d \cdot \log^2 \Delta)$	poly(d)	[Indyk '04]
	1	$\exp(d)$	$\exp(d)$	[Lammersen,Sohler '08]
	1	$1 \pm \epsilon$	exp(d)	only for $d = 2$
	T	1 + C	exp(u)	[Czumaj,Lammersen,Monemizadeh,Sohler '13]
We wanted:	1	O(1)	poly(d)	(still conjectured)
We got:	2	O(1)	poly(d)	*
	1^{\dagger}	O(1)	poly(d)	*; 1^{\dagger} = random-order streams
	1	$O(d^{1.5})$	poly(d)	*
Lower bound:	1	< 1.085	$\Omega\left(2^{poly(d)} ight)$	* follows from Boolean Hidden Matching

• for $d = \Theta(\log n)$ (from JL lemma): improvement from ratio $\Theta(\log^3 n)$ [Indyk '04] to $\Theta(\log^{1.5} n)$

For every point p, we define $\frac{1}{p} \leq r_p \leq 1$ such that:

 \Diamond

 \bigtriangleup

• property 2 \Rightarrow streaming O(1)-approximation of r_p for p given in advance

• but $\Omega(n)$ space needed for any finite approx. when p given as a query (from INDEX)

• property 2 \Rightarrow streaming O(1)-approximation of r_p for p given in advance

- but $\Omega(n)$ space needed for any finite approx. when p given as a query (from INDEX)
- \Rightarrow Naïve two-pass algo. for Facility Location 1st pass: sample a few points uniformly
- - 2nd pass: estimate r_p 's for sampled points

• property 2 \Rightarrow streaming O(1)-approximation of r_p for p given in advance

- but $\Omega(n)$ space needed for any finite approx. when p given as a query (from INDEX)
- \Rightarrow Naïve two-pass algo. for Facility Location 1st pass: sample a few points uniformly

• 2nd pass: estimate r_p 's for sampled points

Uniform sampling has too large variance 😕

Czumaj, Jiang, Krauthgamer, Veselý, Yang

Streaming Facility Location in High Dimension

Goal: sample proportionally to r_p in one pass $\Rightarrow O(1)$ -approximation in two passes

• for $p^* =$ sampled point, $r_{p^*} / \Pr[p^*]$ unbiased estimator of $\sum_p r_p = \Theta(\mathsf{OPT})$

Goal: sample proportionally to r_p in one pass $\Rightarrow O(1)$ -approximation in two passes

• for $p^* =$ sampled point, $r_{p^*} / \Pr[p^*]$ unbiased estimator of $\sum_p r_p = \Theta(\mathsf{OPT})$

Want to sample w/ prob. $\sim r_p$ but cannot estimate r_p for queried p in one pass

VS.

Goal: sample proportionally to r_p in one pass $\Rightarrow O(1)$ -approximation in two passes

• for $p^* =$ sampled point, $r_{p^*} / \Pr[p^*]$ unbiased estimator of $\sum_p r_p = \Theta(\mathsf{OPT})$

Want to sample w/ prob. $\sim r_p$ but cannot estimate r_p for queried p in one pass

 \Rightarrow need to sample w.r.t. geometry

Goal: sample proportionally to r_p in one pass $\Rightarrow O(1)$ -approximation in two passes

• for $p^* =$ sampled point, $r_{p^*} / \Pr[p^*]$ unbiased estimator of $\sum_p r_p = \Theta(\mathsf{OPT})$

Want to sample w/ prob. $\sim r_p$ but cannot estimate r_p for queried p in one pass

 \Rightarrow need to sample w.r.t. geometry

Goal: map/hash $\varphi : \mathbb{R}^d \to \mathbb{R}^d$, then sample uniformly from the support of $\varphi(X)$

- $\varphi^{-1}(p) = \text{bucket of points } p$
- desired properties: "large" r_p (say $r_p pprox 1) \Rightarrow$ few points in the bucket of p
 - dense clusters with points of "small" r_p (say $r_p = o(1)$) mapped to few buckets

Czumaj, Jiang, Krauthgamer, Veselý, Yang

Cosistent Geometric Hashing

${\sf Grids}/{\sf quadtrees} \ {\sf not} \ {\sf good}:$

• cluster intersects 2^d buckets

Cosistent Geometric Hashing

Grids/quadtrees not good:

• cluster intersects 2^d buckets

Goal: space decomposition such that:

- **1.** bounded diameter buckets
- **2.** ball of small-enough diameter intersects poly(d) buckets

Grids/quadtrees not good:

• cluster intersects 2^d buckets

Cosistent Geometric Hashing

- Goal: space decomposition such that:
- 1. bounded diameter buckets
- **2.** ball of small-enough diameter intersects poly(d) buckets

Def.: $\varphi : \mathbb{R}^d \to \mathbb{R}^d$ is Γ -gap Λ -consistent hash if

- **1.** Bounded diameter: every bucket $\varphi^{-1}(y)$ has diameter ≤ 1
- **2. Consistency**: $\forall S \subseteq \mathbb{R}^d$ with $\text{Diam}(S) \leq 1/\Gamma$: $|\varphi(S)| \leq \Lambda$
- need $\Gamma, \Lambda = \text{poly}(d)$
 - Γ determines the approx. ratio of our 1-pass algo.

 \sim sparse partitions from [Jia-Lin-Noubir-Rajaraman-Sundaram'05], [Filtser'20]

- we require computing $\varphi(p)$ in poly(d) time & space
- \bullet we need data-oblivious φ

Construction of Consistent Geometric Hashing

- Def.: $\varphi : \mathbb{R}^d \to \mathbb{R}^d$ is Γ -gap Λ -consistent hash if
 - **1.** Bounded diameter: every bucket $\varphi^{-1}(y)$ has diameter ≤ 1
 - **2.** Consistency: $\forall S \subseteq \mathbb{R}^d$ with $\mathsf{Diam}(S) \leq 1/\Gamma$: $|\varphi(S)| \leq \Lambda$

We get $\Gamma = O(d^{1.5})$ and $\Lambda = d+1$

 \bullet Start with grid & remove ℓ_∞ neighborhoods of faces

Streaming Facility Location in High Dimension

Recall: $\sum_{p} r_{p} = \Theta(\mathsf{OPT})$

We focus on estimating # of points with $r_p \geq 1/2$

- Estimating # of points with $r_p \ge 1/2^i$ similar using subsampling
- **Two-pass algo:** Hash points using consistent φ
 - Sample a non-empty bucket b uniformly & a point from $\varphi^{-1}(b)$
 - \bullet using two-level ℓ_0 samplers
 - 2nd pass: estimate r_p for each sampled point

Recall: $\sum_{p} r_{p} = \Theta(\mathsf{OPT})$

We focus on estimating # of points with $r_p \geq 1/2$

• Estimating # of points with $r_p \ge 1/2^i$ similar using subsampling

Two-pass algo: • Hash points using consistent φ

- Sample a non-empty bucket b uniformly & a point from $\varphi^{-1}(b)$
 - \bullet using two-level ℓ_0 samplers
- 2nd pass: estimate r_p for each sampled point

Bottom line: sampling p with probability
$$\geq \frac{r_p}{\operatorname{poly}(d \cdot \log \Delta)}$$

Recall: $\sum_{p} r_{p} = \Theta(\mathsf{OPT})$

We focus on estimating # of points with $r_{
ho} \geq 1/2$

• Estimating # of points with $r_p \ge 1/2^i$ similar using subsampling

Two-pass algo: • Hash points using consistent φ

- Sample a non-empty bucket b uniformly & a point from $\varphi^{-1}(b)$
 - using two-level ℓ_0 samplers
- 2nd pass: estimate r_p for each sampled point

Bottom line: sampling p with probability $\geq \frac{r_p}{\text{poly}(d \cdot \log \Delta)}$

Random-order streams: • 1st half of stream for sampling

• 2nd half for estimating r_p 's of sampled points

Recall: $\sum_{p} r_{p} = \Theta(\mathsf{OPT})$

We focus on estimating # of points with $r_{
ho} \geq 1/2$

• Estimating # of points with $r_p \ge 1/2^i$ similar using subsampling

Two-pass algo: • Hash points using consistent φ

- Sample a non-empty bucket b uniformly & a point from $\varphi^{-1}(b)$
 - using two-level ℓ_0 samplers
- 2nd pass: estimate r_p for each sampled point

Bottom line: sampling p with probability $\geq \frac{r_p}{\text{poly}(d \cdot \log \Delta)}$

Random-order streams: • 1st half of stream for sampling

• 2nd half for estimating r_p 's of sampled points

One-pass algo: \checkmark if "few" points around $p \Rightarrow r_p$ "large" — recall: $|X \cap B(p, r_p)| \approx 1/r_p$

Streaming Facility Location in High Dimension

value evaluation: r_{rJ}^{K}

K

sampling: x^J

J

Recall: $\sum_{p} r_{p} = \Theta(\mathsf{OPT})$

We focus on estimating # of points with $r_{
ho} \geq 1/2$

• Estimating # of points with $r_p \ge 1/2^i$ similar using subsampling

Two-pass algo: • Hash points using consistent φ

- Sample a non-empty bucket b uniformly & a point from $\varphi^{-1}(b)$
 - using two-level ℓ_0 samplers
- 2nd pass: estimate r_p for each sampled point

Bottom line: sampling p with probability $\geq \frac{r_p}{\text{poly}(d \cdot \log \Delta)}$

Random-order streams: • 1st half of stream for sampling

• 2nd half for estimating r_p 's of sampled points

One-pass algo: \checkmark if "few" points around $p \Rightarrow r_p$ "large" — recall: $|X \cap B(p, r_p)| \approx 1/r_p$

- Count points in close neighborhood of each bucket
 - Similar idea as in [Frahling-Indyk-Sohler'05]
- We can distinguish $r_p \geq \frac{1}{2}$ and $r_p \leq 1/\Gamma$ using Γ -gap hash

Czumaj, Jiang, Krauthgamer, Veselý, Yang

Streaming Facility Location in High Dimension

value evaluation: r_{rJ}^{K}

K

sampling: x^J

J

	# of passes	ratio	space	notes
We wanted:	1	O(1)	poly(d)	(conjecture)
We got:	2	O(1)	poly(d)	*; also 1-pass random-order
	1	$O(d^{1.5})$	poly(d)	*
Lower bound:	1	< 1.085	$\Omega\left(2^{poly(d)}\right)$	*

		# of passes	ratio	space	notes
_	We wanted:	1	O(1)	poly(d)	(conjecture)
_	We got:	2	O(1)	poly(d)	*; also 1-pass random-order
		1	$O(d^{1.5})$	poly(d)	*
	Lower bound:	1	< 1.085	$\Omega\left(2^{poly(d)} ight)$	*

Open problems: • Prove/disprove what we wanted

• In general: need new techniques for high-dimensional spaces

		# of passes	ratio	space	notes
-	We wanted:	1	O(1)	poly(d)	(conjecture)
-	We got:	2	O(1)	poly(d)	*; also 1-pass random-order
		1	$O(d^{1.5})$	poly(d)	*
	Lower bound:	1	< 1.085	$\Omega\left(2^{poly(d)} ight)$	*

- In general: need new techniques for high-dimensional spaces
- Consistent geometric hashing with better gap $\Gamma \Rightarrow$ one-pass $O(\Gamma)$ -approx.
 - $\Gamma = O(d/\log d)$ seems possible [Filtser]

	# of passes	ratio	space	notes
We wanted:	1	O(1)	poly(d)	(conjecture)
We got:	2	O(1)	poly(d)	*; also 1-pass random-order
	1	$O(d^{1.5})$	poly(d)	*
Lower bound:	1	< 1.085	$\Omega\left(2^{poly(d)} ight)$	*

- In general: need new techniques for high-dimensional spaces
- Consistent geometric hashing with better gap $\Gamma \Rightarrow$ one-pass $O(\Gamma)$ -approx.
 - $\Gamma = O(d/\log d)$ seems possible [Filtser]
 - Lower bound: $\Gamma = \Omega(d/\log d)$ (for poly(d) space) [Filtser '20]

		# of passes	ratio	space	notes
	We wanted:	1	O(1)	poly(d)	(conjecture)
·	We got:	2	O(1)	poly(d)	*; also 1-pass random-order
		1	$O(d^{1.5})$	poly(d)	*
	Lower bound:	1	< 1.085	$\Omega\left(2^{poly(d)} ight)$	*

- In general: need new techniques for high-dimensional spaces
- Consistent geometric hashing with better gap $\Gamma \Rightarrow$ one-pass $O(\Gamma)$ -approx.
 - $\Gamma = O(d/\log d)$ seems possible [Filtser]
 - Lower bound: $\Gamma = \Omega(d/\log d)$ (for poly(d) space) [Filtser '20]
- Multiple passes
 - Lower bound for two passes or random-order streams?
 - How many passes do we need for $1 + \varepsilon$ approx. in $poly(d \cdot \log n)$ space

	# of passes	ratio	space	notes
We wanted:	1	O(1)	poly(d)	(conjecture)
We got:	2	O(1)	poly(d)	*; also 1-pass random-order
	1	$O(d^{1.5})$	poly(d)	*
Lower bound:	1	< 1.085	$\Omega\left(2^{poly(d)} ight)$	*

- In general: need new techniques for high-dimensional spaces
- Consistent geometric hashing with better gap $\Gamma \Rightarrow$ one-pass $O(\Gamma)$ -approx.
 - $\Gamma = O(d/\log d)$ seems possible [Filtser]
 - Lower bound: $\Gamma = \Omega(d/\log d)$ (for poly(d) space) [Filtser '20]
- Multiple passes
 - Lower bound for two passes or random-order streams?
 - How many passes do we need for $1 + \varepsilon$ approx. in $poly(d \cdot \log n)$ space
- Other applications of consistent geometric hashing / sparse partitions

Thank You!

Czumaj, Jiang, Krauthgamer, Veselý, Yang

Streaming Facility Location in High Dimension