Streaming Facility Location in High Dimension

 via Geometric Hashing

 via Geometric Hashing}

Pavel Veselý (Charles University, Prague)

Artur Czumaj (Warwick)

Shaofeng Jiang (Peking)

Robert Krauthgamer (Weizmann)

Mingwei Yang (Peking)

Geometric streams

- Input: sequence of points $\begin{array}{r}\boldsymbol{\beta} \\ \text { from } \\ \mathbb{R}^{d}\end{array}$
- Processed in a few passes using small memory
- Goal: estimate a statistic of the point set
- e.g. diameter, cost of clustering, MST, matching, ...
- solution can take space $\Omega(n)$

Geometric streams

- Input: sequence of points $\hat{\sim}$ from \mathbb{R}^{d}
- Processed in a few passes using small memory
- Goal: estimate a statistic of the point set
- e.g. diameter, cost of clustering, MST, matching, ...
- solution can take space $\Omega(n)$

Dynamic geometric streams: classical model [Indyk STOC '04]

- insertions \& deletions
- points from $[\Delta]^{d}$ for integer $\Delta>0$
- space ideally poly $(d \cdot \log \Delta)$
- will ignore $\operatorname{poly}(\log (\Delta+n))$ factors in space

Geometric streams

- Input: sequence of points $\hat{\sim}$ from \mathbb{R}^{d}
- Processed in a few passes using small memory
- Goal: estimate a statistic of the point set
- e.g. diameter, cost of clustering, MST, matching, ...
- solution can take space $\Omega(n)$

Dynamic geometric streams: classical model [Indyk STOC '04]

- insertions \& deletions
- points from $[\Delta]^{d}$ for integer $\Delta>0$
- space ideally poly $(d \cdot \log \Delta)$
- will ignore $\operatorname{poly}(\log (\Delta+n))$ factors in space

Often: "Algo. for insertion-only \Rightarrow Algo. for dynamic geometric streams" "Counterexample": diameter with poly (d) space [Indyk'03], [Agarwal,Sharathkumar'15]

Geometric streams: Main dichotomy

Low Dimension: space $\exp (d) \quad$ High Dimension: space poly (d)

Geometric streams: Main dichotomy

Low Dimension: space $\exp (d)$

- $O(1)$ or even $(1+\varepsilon)$-approximation e.g. for:
- MST, TSP, and Steiner tree [Frahing,Indyk,Sohler '05]
- k-median, k-means, Max-Cut, ... [Frahling\&Sohler '05]
- Facility Location [Czumaj et al. '13]
- Steiner Forest [Czumaj, Jiang, Krauthgamer, V. '22]
- typical space decompositions: grids/quadtree

High Dimension: space poly (d)

Geometric streams: Main dichotomy

Low Dimension: space $\exp (d)$

- $O(1)$ or even $(1+\varepsilon)$-approximation e.g. for:
- MST, TSP, and Steiner tree [Frahling,Indyk,Sohler '05]
- k-median, k-means, Max-Cut, . . . [Frahling\&Sohler '05]
- Facility Location [Czumaj et al. '13]
- Steiner Forest [Czumaj, Jiang, Krauthgamer, V. '22]
- typical space decompositions: grids/quadtree

High Dimension: space poly (d)

- Important case: $d=\Theta(\log n)$ (JL lemma)
- only $O(\log n)$-approximation (or worse)
- ratio $O(d \cdot \log \Delta)$ by tree embeddings [Indyk '04]
- ratio $O(\log n)$ for MST and EMD [Chen, Jayaram, Levi, Waingarten '22]
- lack of techniques for $O(1)$-approx.
- tree embedding distorts distances by $\Omega(\log n)$

Geometric streams: Main dichotomy

Low Dimension: space $\exp (d)$

- $O(1)$ or even $(1+\varepsilon)$-approximation e.g. for:
- MST, TSP, and Steiner tree [Frahling,Indyk,Sohler '05]
- k-median, k-means, Max-Cut, . . . [Frahling\&Sohler '05]
- Facility Location [Czumaj et al. '13]
- Steiner Forest [Czumaj, Jiang, Krauthgamer, V. '22]
- typical space decompositions: grids/quadtree

High Dimension: space poly (d)

- Important case: $d=\Theta(\log n)$ (JL lemma)
- only $O(\log n)$-approximation (or worse)
- ratio $O(d \cdot \log \Delta)$ by tree embeddings [Indyk '04]
- ratio $O(\log n)$ for MST and EMD [Chen, Jayaram, Levi, Waingarten '22]
- lack of techniques for $O(1)$-approx.
- tree embedding distorts distances by $\Omega(\log n)$
- exception: ratio $(1+\varepsilon)$ for k-median and k-means
- low space only for small k
- [Braverman,Frahling,Lang,Sohler,Yang '17], [Song,Yang,Zhong '18]

Geometric streams: Main dichotomy

Low Dimension: space $\exp (d)$

- $O(1)$ or even $(1+\varepsilon)$-approximation e.g. for:
- MST, TSP, and Steiner tree [Frahing,Indyk,Sohler '05]
- k-median, k-means, Max-Cut, ... [Frahling\&Sohler '05]
- Facility Location [Czumaj et al. '13]
- Steiner Forest [Czumaj, Jiang, Krauthgamer, V. '22]
- typical space decompositions: grids/quadtree

High Dimension: space poly (d)

- Important case: $d=\Theta(\log n)$ (JL lemma)
- only $O(\log n)$-approximation (or worse)
- ratio $O(d \cdot \log \Delta)$ by tree embeddings [Indyk '04]
- ratio $O(\log n)$ for MST and EMD [Chen, Jayaram, Levi, Waingarten '22]
- lack of techniques for $O(1)$-approx.
- tree embedding distorts distances by $\Omega(\log n)$
- exception: ratio $(1+\varepsilon)$ for k-median and k-means
- low space only for small k
- [Braverman,Frahling,Lang,Sohler,Yang '17], [Song,Yang,Zhong '18]
- Insertion-only setting:
- Diameter et al.: ratio $O(1)$ [Agarwal,Sharathkumar'15]
- Width in any direction [Woodruff,Yasuda' 22]

Euclidean Uniform Facility Location

Input: pointset $X \subset \mathbb{R}^{d}$, opening cost $\mathfrak{f}>0$
Goal: open a set of facilities F to minimize

$$
\begin{aligned}
& \operatorname{cost}(X, F):=\underbrace{\sum_{p \in X} \operatorname{dist}(p, F)}_{\text {connection cost }}+\underbrace{f \cdot|F|}_{\text {opening cost }} \\
& \operatorname{dist}(p, q):=\|p-q\|_{2} \quad \text { and } \operatorname{dist}(p, F):=\min _{q \in F} \operatorname{dist}(p, q)
\end{aligned}
$$

Euclidean Uniform Facility Location

Input: pointset $X \subset \mathbb{R}^{d}$, opening cost $\mathfrak{f}>0$
Goal: open a set of facilities F to minimize

$$
\begin{aligned}
& \operatorname{cost}(X, F):=\underbrace{\sum_{p \in X} \operatorname{dist}(p, F)}_{\text {connection cost }}+\underbrace{f \cdot|F|}_{\text {opening cost }} \\
& \operatorname{dist}(p, q):=\|p-q\|_{2} \quad \text { and } \operatorname{dist}(p, F):=\min _{q \in F} \operatorname{dist}(p, q)
\end{aligned}
$$

Image credits: NASA Hubble, CC BY 2.0, via Wikimedia Commons

Euclidean Uniform Facility Location

Input: pointset $X \subset \mathbb{R}^{d}$, opening cost $\mathfrak{f}>0$
Goal: open a set of facilities F to minimize

$$
\begin{gathered}
\operatorname{cost}(X, F):=\underbrace{\sum_{p \in X} \operatorname{dist}(p, F)}_{\text {connection cost }}+\underbrace{f \cdot|F|}_{\text {opening cost }} \\
\operatorname{dist}(p, q):=\|p-q\|_{2} \text { and } \operatorname{dist}(p, F):==\min _{q \in F} \operatorname{dist}(p, q)
\end{gathered}
$$

This talk: unit facility cost $\mathfrak{f}=1$

	Facility Location in Geometric Streams			
	\# of passes	ratio	space	reference \& notes
Previous work:	1	$O\left(d \cdot \log ^{2} \Delta\right)$	$\operatorname{poly}(d)$	[Indyk '04]
	1	$\exp (d)$	$\exp (d)$	[Lammersen,Sohler '08] only for $d=2$
	1	$1+\varepsilon$	$\exp (d)$	[Czumaj,Lammersen,Monemizadeh,Sohler '13]

	Facility Location in Geometric Streams			
	\# of passes	ratio	space	reference \& notes
Previous work:	1	$O\left(d \cdot \log ^{2} \Delta\right)$	$\operatorname{poly}(d)$	[Indyk '04]
	1	$\exp (d)$	$\exp (d)$	[Lammersen,Sohler '08] only for $d=2$ [Czumaj,Lammersen,Monemizadeh,Sohler '13]
	1	$1+\varepsilon$	$\exp (d)$	$\operatorname{poly}(d)$

	Facility Location in Geometric Streams			
	\# of passes	ratio	space	reference \& notes
Previous work:	1	$O\left(d \cdot \log ^{2} \Delta\right)$	poly (d)	[Indyk '04]
	1	$\exp (d)$	$\exp (d)$	[Lammersen,Sohler '08]
	1	$1+\varepsilon$	$\exp (d)$	only for $d=2$
[Czumaj, Lammersen,Monemizadeh,Sohler ' 13$]$				
We wanted:	1	$O(1)$	poly (d)	(still conjectured...)
We got:	2	$O(1)$	poly (d)	$*$
	1^{\dagger}	$O(1)$	poly (d)	$* ; 1^{\dagger}=$ random-order streams

	Facility Location in Geometric Streams			
	\# of passes	ratio	space	reference \& notes
Previous work:	1	$O\left(d \cdot \log ^{2} \Delta\right)$	poly (d)	[Indyk '04]
	1	$\exp (d)$	$\exp (d)$	[Lammersen,Sohler '08]
	1	$1+\varepsilon$	$\exp (d)$	only for $d=2$
[Czumaj,Lammersen,Monemizadeh,Sohler ' 13$]$				
We wanted:	1	$O(1)$	poly (d)	(still conjectured. . .)
We got:	2	$O(1)$	poly (d)	$*$
	1^{\dagger}	$O(1)$	poly (d)	$* ; 1^{\dagger}=$ random-order streams
	1	$O\left(d^{1.5}\right)$	poly (d)	$*$

- for $d=\Theta(\log n)$ (from JL lemma): improvement from ratio $\Theta\left(\log ^{3} n\right)$ [Indyk '04] to $\Theta\left(\log ^{1.5} n\right)$

	Facility Location in Geometric Streams			
	\# of passes	ratio	space	reference \& notes
Previous work:	1	$O\left(d \cdot \log ^{2} \Delta\right)$	poly (d)	[Indyk '04]
	1	$\exp (d)$	$\exp (d)$	[Lammersen,Sohler '08]
	1	$1+\varepsilon$	$\exp (d)$	only for $d=2$ [Czumaj, Lammersen,Monemizadeh,Sohler '13]
We wanted:	1	$O(1)$	$\operatorname{poly}(d)$	(still conjectured. . $)$
We got:	2	$O(1)$	$\operatorname{poly}(d)$	$*$
	1^{\dagger}	$O(1)$	poly (d)	$* ; 1^{\dagger}=$ random-order streams
	1	$O\left(d^{1.5}\right)$	poly (d)	$*$

- for $d=\Theta(\log n)$ (from JL lemma): improvement from ratio $\Theta\left(\log ^{3} n\right)$ [Indyk '04] to $\Theta\left(\log ^{1.5} n\right)$

Estimator from Mettu-Plaxton algorithm [Mettu, Plaxton '03], [Bădoiu, Czumaj, Indyk, and Sohler '05] For every point p, we define $\frac{1}{n} \leq r_{p} \leq 1$ such that:

1. $\sum_{p} r_{p}=\Theta(\mathrm{OPT})$
2. $\left|X \cap B\left(p, r_{p}\right)\right| \approx 1 / r_{p} \quad(X=$ input point set $)$

Estimator from Mettu-Plaxton algorithm [Mettu, Plaxton '03], [Bădoiu, Czumaj, Indyk, and Sohler '05]

For every point p, we define $\frac{1}{n} \leq r_{p} \leq 1$ such that:
$\sum_{q \in X \cap B\left(p, r_{p}\right)}\left(r_{p}-\operatorname{dist}(q, p)\right)=1$

1. $\sum_{p} r_{p}=\Theta$ (OPT)
2. $\left|X \cap B\left(p, r_{p}\right)\right| \approx 1 / r_{p} \quad(X=$ input point set $)$

Estimator from Mettu-Plaxton algorithm [Mettu, Plaxton '03], [Bădoiu, Czumaj, Indyk, and Sohler '05]

For every point p, we define $\frac{1}{n} \leq r_{p} \leq 1$ such that:
$\sum_{q \in X \cap B\left(p, r_{p}\right)}\left(r_{p}-\operatorname{dist}(q, p)\right)=1$

1. $\sum_{p} r_{p}=\Theta(\mathrm{OPT})$
2. $\left|X \cap B\left(p, r_{p}\right)\right| \approx 1 / r_{p} \quad(X=$ input point set $)$

- property $2 \Rightarrow$ streaming $O(1)$-approximation of r_{p} for p given in advance
- but $\Omega(n)$ space needed for any finite approx. when p given as a query (from INDEX)

Estimator from Mettu-Plaxton algorithm [Mettu, Plaxton '03], [Bădoiu, Czumaj, Indyk, and Sohler '05]

For every point p, we define $\frac{1}{n} \leq r_{p} \leq 1$ such that:
$\sum_{q \in X \cap B\left(p, r_{p}\right)}\left(r_{p}-\operatorname{dist}(q, p)\right)=1$

2. $\left|X \cap B\left(p, r_{p}\right)\right| \approx 1 / r_{p} \quad(X=$ input point set $)$

- property $2 \Rightarrow$ streaming $O(1)$-approximation of r_{p} for p given in advance
- but $\Omega(n)$ space needed for any finite approx. when p given as a query (from INDEX)
\Rightarrow Naïve two-pass algo. for Facility Location
- 1st pass: sample a few points uniformly
- 2nd pass: estimate r_{p} 's for sampled points

Estimator from Mettu-Plaxton algorithm [Mettu, Plaxton '03], [Bădoiu, Czumaj, Indyk, and Sohler '05]

For every point p, we define $\frac{1}{n} \leq r_{p} \leq 1$ such that:
$\sum_{q \in X \cap B\left(p, r_{p}\right)}\left(r_{p}-\operatorname{dist}(q, p)\right)=1$

\sqrt{n} points with $r_{p} \geq \frac{1}{2} \&$ OPT $\approx \sqrt{n}$

$r_{p} \approx 1 / n$

1. $\sum_{p} r_{p}=\Theta$ (OPT)
2. $\left|X \cap B\left(p, r_{p}\right)\right| \approx 1 / r_{p} \quad(X=$ input point set $)$

- property $2 \Rightarrow$ streaming $O(1)$-approximation of r_{p} for p given in advance
- but $\Omega(n)$ space needed for any finite approx. when p given as a query (from INDEX)
\Rightarrow Naïve two-pass algo. for Facility Location
- 1st pass: sample a few points uniformly
- 2nd pass: estimate r_{p} 's for sampled points

Uniform sampling has too large variance

Geometric Importance Sampling

Goal: sample proportionally to r_{p} in one pass $\Rightarrow O(1)$-approximation in two passes

- for $p^{*}=$ sampled point, $r_{p^{*}} / \operatorname{Pr}\left[p^{*}\right]$ unbiased estimator of $\sum_{p} r_{p}=\Theta(\mathrm{OPT})$

Geometric Importance Sampling

Goal: sample proportionally to r_{p} in one pass $\Rightarrow O(1)$-approximation in two passes

- for $p^{*}=$ sampled point, $r_{p^{*}} / \operatorname{Pr}\left[p^{*}\right]$ unbiased estimator of $\sum_{p} r_{p}=\Theta$ (OPT) Want to sample w/prob. $\sim r_{p}$ but cannot estimate r_{p} for queried p in one pass

vs.

Geometric Importance Sampling

Goal: sample proportionally to r_{p} in one pass $\Rightarrow O(1)$-approximation in two passes

- for $p^{*}=$ sampled point, $r_{p^{*}} / \operatorname{Pr}\left[p^{*}\right]$ unbiased estimator of $\sum_{p} r_{p}=\Theta$ (OPT)

Want to sample w/prob. $\sim r_{p}$ but cannot estimate r_{p} for queried p in one pass

vs.
\Rightarrow need to sample w.r.t. geometry

Geometric Importance Sampling

Goal: sample proportionally to r_{p} in one pass $\Rightarrow O(1)$-approximation in two passes

- for $p^{*}=$ sampled point, $r_{p^{*}} / \operatorname{Pr}\left[p^{*}\right]$ unbiased estimator of $\sum_{p} r_{p}=\Theta$ (OPT)

Want to sample w/prob. $\sim r_{p}$ but cannot estimate r_{p} for queried p in one pass

vs.
\Rightarrow need to sample w.r.t. geometry
Goal: map/hash $\varphi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$, then sample uniformly from the support of $\varphi(X)$

- $\varphi^{-1}(p)=$ bucket of points p
- desired properties: "large" $r_{p}\left(\right.$ say $\left.r_{p} \approx 1\right) \Rightarrow$ few points in the bucket of p
- dense clusters with points of "small" $r_{p}\left(\right.$ say $\left.r_{p}=o(1)\right)$ mapped to few buckets

Cosistent Geometric Hashing

Grids/quadtrees not good:

- cluster intersects 2^{d} buckets

Cosistent Geometric Hashing

Grids/quadtrees not good:

- cluster intersects 2^{d} buckets

Goal: space decomposition such that:

1. bounded diameter buckets
2. ball of small-enough diameter intersects poly (d) buckets

Cosistent Geometric Hashing

Grids/quadtrees not good:

- cluster intersects 2^{d} buckets

Goal: space decomposition such that:

1. bounded diameter buckets
2. ball of small-enough diameter intersects poly (d) buckets

Def.: $\varphi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ is Γ-gap Λ-consistent hash if

1. Bounded diameter: every bucket $\varphi^{-1}(y)$ has diameter ≤ 1
2. Consistency: $\forall S \subseteq \mathbb{R}^{d}$ with $\operatorname{Diam}(S) \leq \mathbf{1} / \Gamma: \quad|\varphi(S)| \leq \Lambda$

- need $\Gamma, \Lambda=\operatorname{poly}(d)$
- 「 determines the approx. ratio of our 1-pass algo.
~ sparse partitions from [Jia-Lin-Noubir-Rajaraman-Sundaram'05], [Filtser'20]
- we require computing $\varphi(p)$ in poly (d) time \& space
- we need data-oblivious φ

Construction of Consistent Geometric Hashing

Def.: $\varphi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ is Γ-gap Λ-consistent hash if

1. Bounded diameter: every bucket $\varphi^{-1}(y)$ has diameter ≤ 1
2. Consistency: $\forall S \subseteq \mathbb{R}^{d}$ with $\operatorname{Diam}(S) \leq \mathbf{1} / \Gamma:|\varphi(S)| \leq \Lambda$

We get $\Gamma=O\left(d^{1.5}\right)$ and $\Lambda=d+1$

- Start with grid \& remove ℓ_{∞} neighborhoods of faces

Algorithmic Framework Overview

Recall: $\sum_{p} r_{p}=\Theta$ (OPT)
We focus on estimating \# of points with $r_{p} \geq 1 / 2$

- Estimating \# of points with $r_{p} \geq 1 / 2^{i}$ similar using subsampling

Two-pass algo: - Hash points using consistent φ

- Sample a non-empty bucket b uniformly \& a point from $\varphi^{-1}(b)$
- using two-level ℓ_{0} samplers
- 2nd pass: estimate r_{p} for each sampled point

Algorithmic Framework Overview

Recall: $\sum_{p} r_{p}=\Theta$ (OPT)
We focus on estimating \# of points with $r_{p} \geq 1 / 2$

- Estimating \# of points with $r_{p} \geq 1 / 2^{i}$ similar using subsampling

Two-pass algo: - Hash points using consistent φ

- Sample a non-empty bucket b uniformly \& a point from $\varphi^{-1}(b)$
- using two-level ℓ_{0} samplers
- 2nd pass: estimate r_{p} for each sampled point

Bottom line: sampling p with probability $\geq \frac{r_{p}}{\operatorname{poly}(d \cdot \log \Delta)}$

Algorithmic Framework Overview

Recall: $\sum_{p} r_{p}=\Theta$ (OPT)
We focus on estimating \# of points with $r_{p} \geq 1 / 2$

- Estimating \# of points with $r_{p} \geq 1 / 2^{i}$ similar using subsampling

Two-pass algo: - Hash points using consistent φ

- Sample a non-empty bucket b uniformly \& a point from $\varphi^{-1}(b)$
- using two-level ℓ_{0} samplers
- 2nd pass: estimate r_{p} for each sampled point

Bottom line: sampling p with probability $\geq \frac{r_{p}}{\operatorname{poly}(d \cdot \log \Delta)}$
Random-order streams:

- 1st half of stream for sampling
- 2nd half for estimating r_{p} 's of sampled points

Algorithmic Framework Overview

Recall: $\sum_{p} r_{p}=\Theta$ (OPT)
We focus on estimating \# of points with $r_{p} \geq 1 / 2$

- Estimating \# of points with $r_{p} \geq 1 / 2^{i}$ similar using subsampling

Two-pass algo: • Hash points using consistent φ

- Sample a non-empty bucket b uniformly \& a point from $\varphi^{-1}(b)$
- using two-level ℓ_{0} samplers
- 2nd pass: estimate r_{p} for each sampled point

Bottom line: sampling p with probability $\geq \frac{r_{p}}{\operatorname{poly}(d \cdot \log \Delta)}$
Random-order streams:

- 1st half of stream for sampling
- 2nd half for estimating r_{p} 's of sampled points

One-pass algo: if "few" points around $p \Rightarrow r_{p}$ "large" - recall: $\left|X \cap B\left(p, r_{p}\right)\right| \approx 1 / r_{p}$

Algorithmic Framework Overview

Recall: $\sum_{p} r_{p}=\Theta$ (OPT)
We focus on estimating \# of points with $r_{p} \geq 1 / 2$

- Estimating \# of points with $r_{p} \geq 1 / 2^{i}$ similar using subsampling

Two-pass algo: • Hash points using consistent φ

- Sample a non-empty bucket b uniformly \& a point from $\varphi^{-1}(b)$
- using two-level ℓ_{0} samplers
- 2nd pass: estimate r_{p} for each sampled point

Bottom line: sampling p with probability $\geq \frac{r_{p}}{\operatorname{poly}(d \cdot \log \Delta)}$
Random-order streams:

- 1st half of stream for sampling
- 2nd half for estimating r_{p} 's of sampled points

One-pass algo: if "few" points around $p \Rightarrow r_{p}$ "large" - recall: $\left|X \cap B\left(p, r_{p}\right)\right| \approx 1 / r_{p}$

- Count points in close neighborhood of each bucket
- Similar idea as in [Frahling-Indyk-Sohler'05]
- We can distinguish $r_{p} \geq \frac{1}{2}$ and $r_{p} \leq 1 / \Gamma$ using Γ-gap hash

Conclusions \& Open Problem

	\# of passes	ratio	space	notes
We wanted:	1	$O(1)$	$\operatorname{poly}(d)$	(conjecture)
We got:	2	$O(1)$	$\operatorname{poly}(d)$	*; also 1-pass random-order
	1	$O\left(d^{1.5}\right)$	$\operatorname{poly}(d)$	$*$
Lower bound:	1	<1.085	$\Omega\left(2^{\text {poly }(d)}\right)$	$*$

Conclusions \& Open Problem

	$\#$ of passes	ratio	space	notes
We wanted:	1	$O(1)$	$\operatorname{poly}(d)$	(conjecture)
We got:	2	$O(1)$	$\operatorname{poly}(d)$	$*$; also 1-pass random-order
	1	$O\left(d^{1.5}\right)$	$\operatorname{poly}(d)$	$*$
Lower bound:	1	<1.085	$\Omega\left(2^{\text {poly }(d)}\right)$	$*$

Open problems: • Prove/disprove what we wanted

- In general: need new techniques for high-dimensional spaces

Conclusions \& Open Problem

	\# of passes	ratio	space	notes
We wanted:	1	$O(1)$	$\operatorname{poly}(d)$	(conjecture)
We got:	2	$O(1)$	$\operatorname{poly}(d)$	$*$; also 1-pass random-order
	1	$O\left(d^{1.5}\right)$	$\operatorname{poly}(d)$	$*$
Lower bound:	1	<1.085	$\Omega\left(2^{\text {poly }(d)}\right)$	$*$

Open problems: • Prove/disprove what we wanted

- In general: need new techniques for high-dimensional spaces
- Consistent geometric hashing with better gap $\Gamma \Rightarrow$ one-pass $O(\Gamma)$-approx.
- $\Gamma=O(d / \log d)$ seems possible [Filtser]

Conclusions \& Open Problem

	\# of passes	ratio	space	notes
We wanted:	1	$O(1)$	$\operatorname{poly}(d)$	(conjecture)
We got:	2	$O(1)$	$\operatorname{poly}(d)$	$*$; also 1-pass random-order
	1	$O\left(d^{1.5}\right)$	$\operatorname{poly}(d)$	$*$
Lower bound:	1	<1.085	$\Omega\left(2^{\text {poly }(d)}\right)$	$*$

Open problems: • Prove/disprove what we wanted

- In general: need new techniques for high-dimensional spaces
- Consistent geometric hashing with better gap $\Gamma \Rightarrow$ one-pass $O(\Gamma)$-approx.
- $\Gamma=O(d / \log d)$ seems possible [Filtser]
- Lower bound: $\Gamma=\Omega(d / \log d)$ (for poly (d) space) [Filtser '20]

Conclusions \& Open Problem

	$\#$ of passes	ratio	space	notes
We wanted:	1	$O(1)$	$\operatorname{poly}(d)$	(conjecture)
We got:	2	$O(1)$	$\operatorname{poly}(d)$	$*$; also 1-pass random-order
	1	$O\left(d^{1.5}\right)$	$\operatorname{poly}(d)$	$*$
Lower bound:	1	<1.085	$\Omega\left(2^{\operatorname{poly}(d)}\right)$	$*$

Open problems: • Prove/disprove what we wanted

- In general: need new techniques for high-dimensional spaces
- Consistent geometric hashing with better gap $\Gamma \Rightarrow$ one-pass $O(\Gamma)$-approx.
- $\Gamma=O(d / \log d)$ seems possible [Filtser]
- Lower bound: $\Gamma=\Omega(d / \log d)$ (for poly (d) space) [Filtser '20]
- Multiple passes
- Lower bound for two passes or random-order streams?
- How many passes do we need for $1+\varepsilon$ approx. in $\operatorname{poly}(d \cdot \log n)$ space

Conclusions \& Open Problem

	$\#$ of passes	ratio	space	notes
We wanted:	1	$O(1)$	$\operatorname{poly}(d)$	(conjecture)
We got:	2	$O(1)$	$\operatorname{poly}(d)$	$*$; also 1-pass random-order
	1	$O\left(d^{1.5}\right)$	$\operatorname{poly}(d)$	$*$
Lower bound:	1	<1.085	$\Omega\left(2^{\operatorname{poly}(d)}\right)$	$*$

Open problems: • Prove/disprove what we wanted

- In general: need new techniques for high-dimensional spaces
- Consistent geometric hashing with better gap $\Gamma \Rightarrow$ one-pass $O(\Gamma)$-approx.
- $\Gamma=O(d / \log d)$ seems possible [Filtser]
- Lower bound: $\Gamma=\Omega(d / \log d)$ (for poly (d) space) [Filtser '20]
- Multiple passes
- Lower bound for two passes or random-order streams?
- How many passes do we need for $1+\varepsilon$ approx. in $\operatorname{poly}(d \cdot \log n)$ space
- Other applications of consistent geometric hashing / sparse partitions

Thank You!

