Tight Lower Bound for Comparison-Based Quantile Summaries

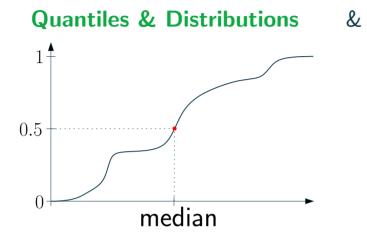
Pavel Veselý University of Warwick

8 April 2020

Based on joint work with Graham Cormode (Warwick)

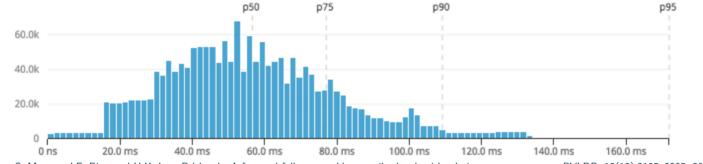
Powered by BeamerikZ

Overview of the talk

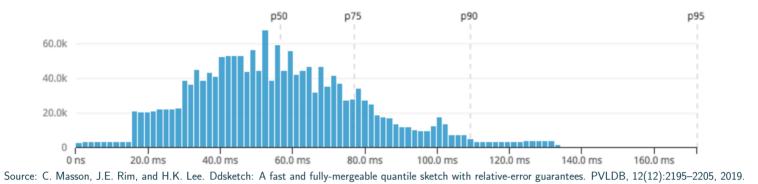


Big Data Algorithms

Streaming Model

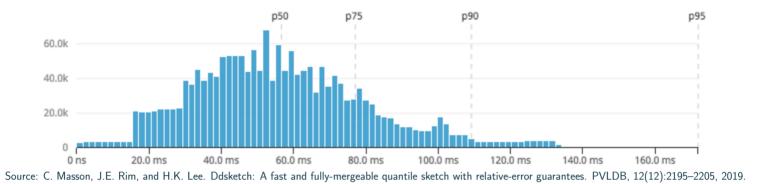


Source: C. Masson, J.E. Rim, and H.K. Lee. Ddsketch: A fast and fully-mergeable quantile sketch with relative-error guarantees. PVLDB, 12(12):2195-2205, 2019.



Millions of observations

• no need to store all observed latencies

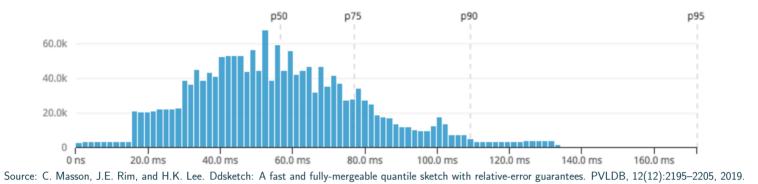


Millions of observations

• no need to store all observed latencies

How does the distribution look like?

What is the median latency?



Millions of observations

• no need to store all observed latencies

How does the distribution look like?

What is the median latency?

 \bullet Average latency too high due to $\sim 2\%$ of very high latencies

Motivation: monitoring latencies of requests

Motivation: monitoring latencies of requests

Streaming model = one pass over data & limited memory

RIG

Motivation: monitoring latencies of requests

Streaming model = one pass over data & limited memory

Streaming algorithm

- receives data in a stream, item by item
- uses memory sublinear in N = stream length
- at the end, computes the answer

Motivation: monitoring latencies of requests

Streaming model = one pass over data & limited memory

Streaming algorithm

- receives data in a stream, item by item
- uses memory sublinear in N = stream length
- at the end, computes the answer
- Challenges: *N* very large & not known
 - Data independent
 - Stream ordered arbitrarily
 - No random access to data

Motivation: monitoring latencies of requests

Streaming model = one pass over data & limited memory

Streaming algorithm

- receives data in a stream, item by item
- uses memory sublinear in N = stream length
- at the end, computes the answer
- Challenges: *N* very large & not known
 - Data independent
 - Stream ordered arbitrarily
 - No random access to data

Main objective: space

Motivation: monitoring latencies of requests

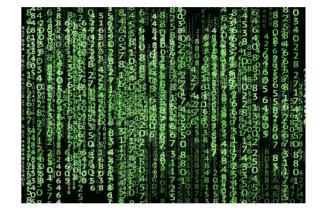
Streaming model = one pass over data & limited memory

Streaming algorithm

- receives data in a stream, item by item
- uses memory sublinear in N = stream length
- at the end, computes the answer
- Challenges: *N* very large & not known
 - Data independent
 - Stream ordered arbitrarily
 - No random access to data

Main objective: **space**

How to summarize the input?



- Input: stream of N numbers
- Goal: find the *k*-th smallest
 - e.g.: the median, 99th percentile
- $\mathcal{O}(N)$ time offline algorithm [Blum *et al.* '73]

- Input: stream of N numbers
- Goal: find the *k*-th smallest
 - e.g.: the median, 99th percentile
- $\mathcal{O}(N)$ time offline algorithm [Blum *et al.* '73]
- Streaming restrictions:
 - just one pass over the data
 - limited memory: o(N)

- Input: stream of N numbers
- Goal: find the *k*-th smallest
 - e.g.: the median, 99th percentile
- $\mathcal{O}(N)$ time offline algorithm [Blum *et al.* '73]
- Streaming restrictions:
 - just one pass over the data
 - limited memory: o(N)

No streaming algorithm for exact selection $\Omega(N)$ space needed to find the median [Munro & Paterson '80, Guha & McGregor '07]

- Input: stream of N numbers
- Goal: find the *k*-th smallest
 - e.g.: the median, 99th percentile
- $\mathcal{O}(N)$ time offline algorithm [Blum *et al.* '73]
- Streaming restrictions:
 - just one pass over the data
 - limited memory: o(N)



No streaming algorithm for exact selection $\Omega(N)$ space needed to find the median [Munro & Paterson '80, Guha & McGregor '07]

What about finding an approximate median?

How to define an approximate median?

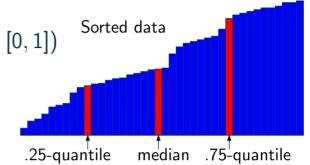
How to define an approximate median?

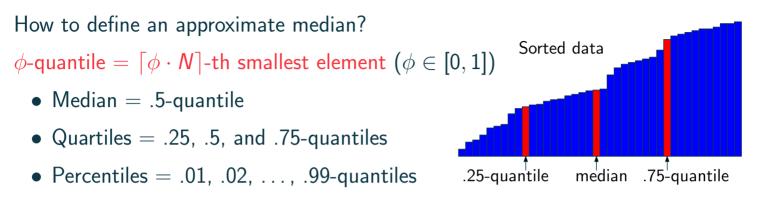
 ϕ -quantile = $\lceil \phi \cdot N \rceil$ -th smallest element ($\phi \in [0, 1]$)

• Median = .5-quantile

How to define an approximate median? Sorted data ϕ -quantile = $\left[\phi \cdot N\right]$ -th smallest element ($\phi \in [0, 1]$) • Median = .5-quantile

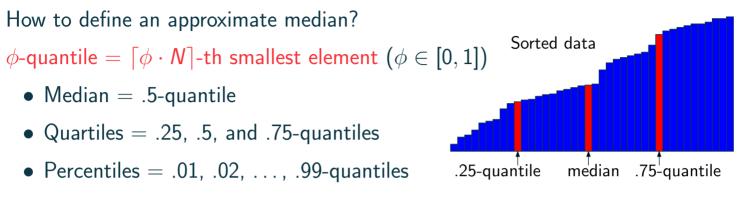
- Quartiles = .25, .5, and .75-quantiles
- Percentiles = $.01, .02, \ldots, .99$ -quantiles





 ε -approximate ϕ -quantile = any ϕ' -quantile for $\phi' = [\phi - \varepsilon, \phi + \varepsilon]$

• .01-approximate medians are .49- and .51-quantiles (and items in between)

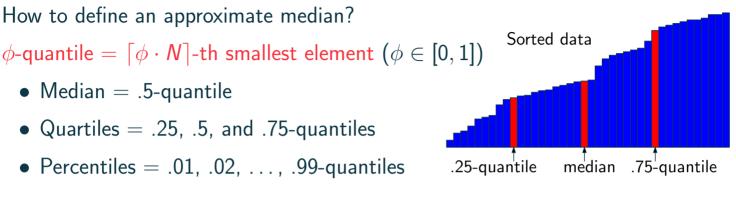


 ε -approximate ϕ -quantile = any ϕ' -quantile for $\phi' = [\phi - \varepsilon, \phi + \varepsilon]$

• .01-approximate medians are .49- and .51-quantiles (and items in between)

 ε -approximate selection:

• query k-th smallest \rightarrow return k'-th smallest for $k' = k \pm \varepsilon N$

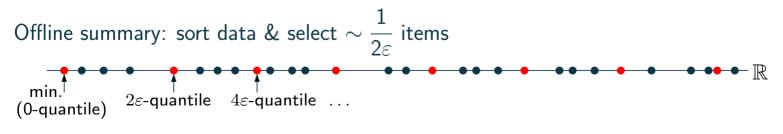


 ε -approximate ϕ -quantile = any ϕ' -quantile for $\phi' = [\phi - \varepsilon, \phi + \varepsilon]$

• .01-approximate medians are .49- and .51-quantiles (and items in between)

 ε -approximate selection:

• query k-th smallest \rightarrow return k'-th smallest for $k' = k \pm \varepsilon N$



5 / 10

ε -Approximate Quantile Summaries

Data structure with two operations:

• UPDATE(x): x = new item from the stream

6 / 10

ε -Approximate Quantile Summaries

Data structure with two operations:

- UPDATE(x): x = new item from the stream
- QUANTILE_QUERY(ϕ): For $\phi \in [0, 1]$, return ε -approximate ϕ -quantile

6 / 10

ε -Approximate Quantile Summaries

Data structure with two operations:

- UPDATE(x): x = new item from the stream
- QUANTILE_QUERY(ϕ): For $\phi \in [0, 1]$, return ε -approximate ϕ -quantile

Additional operations:

- Rank_Query(x):
 - For item x, determine its rank = position in the ordering of the input

ε-Approximate Quantile Summaries

Data structure with two operations:

- UPDATE(x): x = new item from the stream
- QUANTILE_QUERY(ϕ): For $\phi \in [0, 1]$, return ε -approximate ϕ -quantile

Additional operations:

- Rank_Query(x):
 - For item x, determine its rank = position in the ordering of the input
- Merge of two quantile summaries
 - Preserve space bounds, while maintaining accuracy

ε-Approximate Quantile Summaries

Data structure with two operations:

- UPDATE(x): x = new item from the stream
- QUANTILE_QUERY(ϕ): For $\phi \in [0, 1]$, return ε -approximate ϕ -quantile

Additional operations:

- RANK_QUERY(x):
 - For item x, determine its rank = position in the ordering of the input
- Merge of two quantile summaries
 - Preserve space bounds, while maintaining accuracy

Quantile summaries \rightarrow streaming algorithms for:

- Approximating distributions
- Equi-depth histograms
- Streaming Bin Packing [Cormode & V. '20]

ε-Approximate Quantile Summaries

Data structure with two operations:

- UPDATE(x): x = new item from the stream
- QUANTILE_QUERY(ϕ): For $\phi \in [0, 1]$, return ε -approximate ϕ -quantile

Additional operations:

- RANK_QUERY(x):
 - For item x, determine its rank = position in the ordering of the input
- Merge of two quantile summaries
 - Preserve space bounds, while maintaining accuracy

Quantile summaries \rightarrow streaming algorithms for:

- Approximating distributions
- Equi-depth histograms
- Streaming Bin Packing [Cormode & V. '20]

Bottom line: Finding ε -approximate median in data streams

State-of-the-art results

space $\sim \#$ of stored items

State-of-the-art results

space $\sim \#$ of stored items

• $\mathcal{O}\left(\frac{1}{\varepsilon} \cdot \log \varepsilon N\right)$ – deterministic comparison-based [Greenwald & Khanna '01] maintains a subset of items + bounds on their ranks

State-of-the-art results

space $\sim \#$ of stored items

• $\mathcal{O}\left(\frac{1}{\varepsilon} \cdot \log \varepsilon N\right)$ – deterministic comparison-based [Greenwald & Khanna '01] maintains a subset of items + bounds on their ranks

•
$$\mathcal{O}\left(\frac{1}{\varepsilon} \cdot \log M\right)$$
 - deterministic for integers $\{1, \ldots, M\}$ [Shrivastava *et al.* '04]
not for floats or strings

State-of-the-art results

space $\sim \#$ of stored items

• $\mathcal{O}\left(\frac{1}{\varepsilon} \cdot \log \varepsilon N\right)$ – deterministic comparison-based [Greenwald & Khanna '01] maintains a subset of items + bounds on their ranks

• $\mathcal{O}\left(\frac{1}{\varepsilon} \cdot \log M\right)$ – deterministic for integers $\{1, \ldots, M\}$ [Shrivastava *et al.* '04] not for floats or strings

– randomized [Karnin et al. '16]

const. probability of violating $\pm \varepsilon N$ error guarantee

State-of-the-art results

space $\sim \#$ of stored items

• $\mathcal{O}\left(\frac{1}{\varepsilon} \cdot \log \varepsilon N\right)$ – deterministic comparison-based [Greenwald & Khanna '01] maintains a subset of items + bounds on their ranks

• $\mathcal{O}\left(\frac{1}{\varepsilon} \cdot \log M\right)$ – deterministic for integers $\{1, \ldots, M\}$ [Shrivastava *et al.* '04] not for floats or strings

Many more papers: [Munro & Paterson '80, Manku *et al.* '98, Manku *et al.* '99] [Hung & Ting '10, Agarwal *et al.* '12, Wang *et al.* '13, Felber & Ostrovsky '15, ...] Approx. Median & Quantiles: Is There a "Perfect" Algorithm?

Approx. Median & Quantiles: Is There a "Perfect" Algorithm?

What would be a "perfect" streaming algorithm?

- finds ε -approximate median
- deterministic

Approx. Median & Quantiles: Is There a "Perfect" Algorithm?

What would be a "perfect" streaming algorithm?

- finds ε -approximate median
- deterministic

• constant space for fixed ε

• ideally
$$\mathcal{O}\left(\frac{1}{\varepsilon}\right)$$
; or e.g. $\mathcal{O}\left(\frac{1}{\varepsilon^2}\right)$

Approx. Median & Quantiles: Is There a "Perfect" Algorithm?

What would be a "perfect" streaming algorithm?

- finds ε -approximate median
- deterministic

• constant space for fixed ε

• ideally
$$\mathcal{O}\left(\frac{1}{\varepsilon}\right)$$
; or e.g. $\mathcal{O}\left(\frac{1}{\varepsilon^2}\right)$

- no additional knowledge about items
 - comparison-based

Approx. Median & Quantiles: Is There a "Perfect" Algorithm?

What would be a "perfect" streaming algorithm?

- finds ε -approximate median
- deterministic

• constant space for fixed ε

• ideally
$$\mathcal{O}\left(\frac{1}{\varepsilon}\right)$$
; or e.g. $\mathcal{O}\left(\frac{1}{\varepsilon^2}\right)$

- no additional knowledge about items
 - comparison-based

Theorem (Cormode, V. '20)

There is **no** perfect streaming algorithm for ε -approximate median

Pavel Veselý

Approx. Median & Quantiles: Is There a "Perfect" Algorithm?

What would be a "perfect" streaming algorithm?

- finds ε -approximate median
- deterministic

• constant space for fixed ε

• ideally
$$\mathcal{O}\left(\frac{1}{\varepsilon}\right)$$
; or e.g. $\mathcal{O}\left(\frac{1}{\varepsilon^2}\right)$

- no additional knowledge about items
 - comparison-based

Theorem (Cormode, V. '20)

There is **no** perfect streaming algorithm for ε -approximate median

- Optimal space lower bound $\Omega\left(\frac{1}{\varepsilon} \cdot \log \varepsilon N\right)$
 - Matches the result in [Greenwald & Khanna '01]

 \Rightarrow cannot compare with items deleted from the memory

9 / 10

Comparison-based algorithm

 \Rightarrow cannot compare with items deleted from the memory

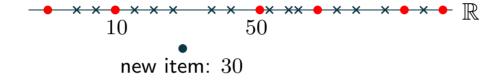
Comparison-based algorithm

 \Rightarrow cannot compare with items deleted from the memory

9 / 10

Comparison-based algorithm

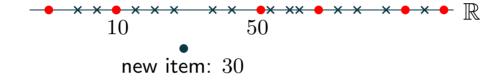
 \Rightarrow cannot compare with items deleted from the memory



How does 30 compare to discarded items between 10 and 50?

Comparison-based algorithm

 \Rightarrow cannot compare with items deleted from the memory



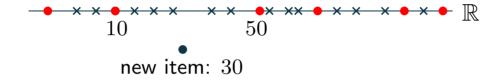
How does 30 compare to discarded items between 10 and 50?

Idea: Introduce uncertainty

- too high uncertainty \Rightarrow not accurate-enough answers

Comparison-based algorithm

 \Rightarrow cannot compare with items deleted from the memory



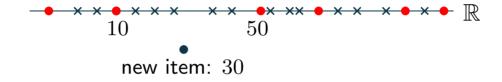
How does 30 compare to discarded items between 10 and 50?

Idea: Introduce uncertainty

- too high uncertainty \Rightarrow not accurate-enough answers
- need to show: low uncertainty \Rightarrow many items stored \Rightarrow large space needed

Comparison-based algorithm

 \Rightarrow cannot compare with items deleted from the memory



How does 30 compare to discarded items between 10 and 50?

Idea: Introduce uncertainty

- ,
- too high uncertainty \Rightarrow not accurate-enough answers
- need to show: low uncertainty \Rightarrow many items stored \Rightarrow large space needed

 \rightarrow recursive construction of worst-case stream \rightarrow lower bound $\Omega\left(\frac{1}{\varepsilon} \cdot \log \varepsilon N\right)$

9 / 10

Problem solved:

- Deterministic algorithms: space $\Theta\left(\frac{1}{\varepsilon} \cdot \log \varepsilon N\right)$ optimal [Greenwald & Khanna '01]
- Randomized algorithms: space $\Theta\left(\frac{1}{\varepsilon}\right)$ optimal (const. probability of too high error) [Karnin *et al.* '16]

[Cormode, V. '20]

Problem solved:

- Deterministic algorithms: space $\Theta\left(\frac{1}{\varepsilon} \cdot \log \varepsilon N\right)$ optimal [Greenwald & Khanna '01]

[Cormode, V. '20]

• Randomized algorithms: space $\Theta\left(\frac{1}{\varepsilon}\right)$ optimal (const. probability of too high error) [Karnin *et al.* '16]

Future work:

• Figure out constant factors

Problem solved:

- Deterministic algorithms: space $\Theta\left(\frac{1}{\varepsilon} \cdot \log \varepsilon N\right)$ optimal [Greenwald & Khanna '01]
- Randomized algorithms: space $\Theta\left(\frac{1}{\varepsilon}\right)$ optimal (const. probability of too high error) [Karnin *et al.* '16]

Future work:

- Figure out constant factors
- Randomized algorithm with good expected space, but guaranteed $\pm \varepsilon N$ error

Problem solved:

- Deterministic algorithms: space $\Theta\left(\frac{1}{\varepsilon} \cdot \log \varepsilon N\right)$ optimal [Greenwald & Khanna '01]
 - [Cormode, **V.** '20]
- Randomized algorithms: space $\Theta\left(\frac{1}{\varepsilon}\right)$ optimal (const. probability of too high error) [Karnin *et al.* '16]

Future work:

- Figure out constant factors
- Randomized algorithm with good expected space, but guaranteed $\pm \varepsilon N$ error
- A non-trivial lower bound for integers $\{1, \ldots, M\}$?
 - Or can we do better than $\mathcal{O}\left(\frac{1}{\varepsilon} \cdot \log M\right)$?

Problem solved:

- Deterministic algorithms: space $\Theta\left(\frac{1}{\varepsilon} \cdot \log \varepsilon N\right)$ optimal [Greenwald & Khanna '01]
 - [Cormode, **V.** '20]
- Randomized algorithms: space $\Theta\left(\frac{1}{\varepsilon}\right)$ optimal (const. probability of too high error) [Karnin *et al.* '16]

Future work:

- Figure out constant factors
- Randomized algorithm with good expected space, but guaranteed $\pm \varepsilon N$ error
- A non-trivial lower bound for integers $\{1, \ldots, M\}$?
 - Or can we do better than $\mathcal{O}\left(\frac{1}{\varepsilon} \cdot \log M\right)$?
- Dynamic streams w/ insertions and deletions of items

