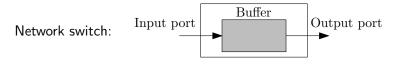
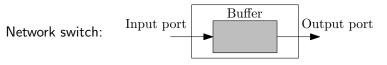
A ϕ -Competitive Algorithm for Scheduling Packets with Deadlines

Pavel Veselý University of Warwick

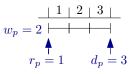
Joint work with Marek Chrobak (UC Riverside), Łukasz Jeż (Wrocław Univ.), and Jiří Sgall (Charles Univ., Prague).

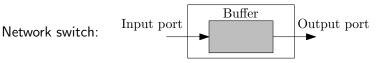
SODA'19, January 6



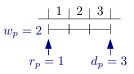


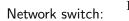
- Packets arrive over time
- Each has a deadline and a weight



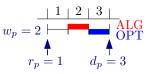


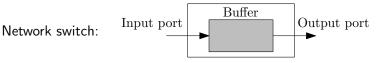
- Packets arrive over time
- Each has a deadline and a weight
- Time discrete, consisting of *slots* or *steps*
- One packet transmitted in each step



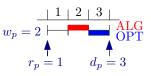


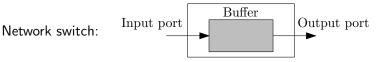
- Packets arrive over time
- Each has a deadline and a weight
- Time discrete, consisting of *slots* or *steps*
- One packet transmitted in each step



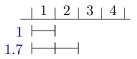


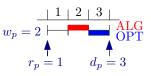
- Packets arrive over time
- Each has a deadline and a weight
- Time discrete, consisting of *slots* or *steps*
- One packet transmitted in each step
- Goal: maximize total weight of scheduled packets

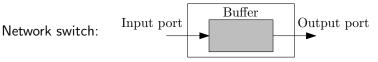




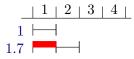
- Packets arrive over time
- Each has a deadline and a weight
- Time discrete, consisting of *slots* or *steps*
- One packet transmitted in each step
- Goal: maximize total weight of scheduled packets

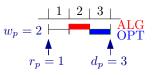


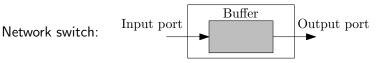




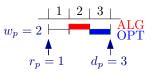
- Packets arrive over time
- Each has a deadline and a weight
- Time discrete, consisting of *slots* or *steps*
- One packet transmitted in each step
- Goal: maximize total weight of scheduled packets



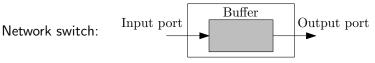




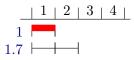
- Packets arrive over time
- Each has a deadline and a weight
- Time discrete, consisting of *slots* or *steps*
- One packet transmitted in each step
- Goal: maximize total weight of scheduled packets

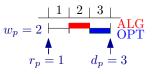


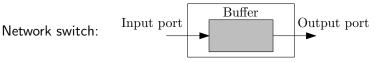
ONLINE PACKET SCHEDULING WITH DEADLINES



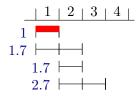
- Packets arrive over time
- Each has a deadline and a weight
- Time discrete, consisting of *slots* or *steps*
- One packet transmitted in each step
- Goal: maximize total weight of scheduled packets

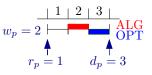


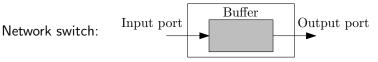




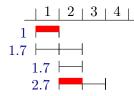
- Packets arrive over time
- Each has a deadline and a weight
- Time discrete, consisting of *slots* or *steps*
- One packet transmitted in each step
- Goal: maximize total weight of scheduled packets

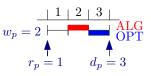


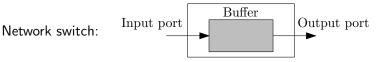




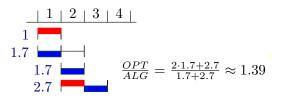
- Packets arrive over time
- Each has a deadline and a weight
- Time discrete, consisting of *slots* or *steps*
- One packet transmitted in each step
- Goal: maximize total weight of scheduled packets

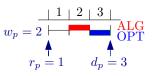


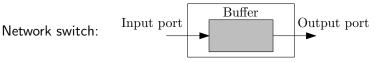




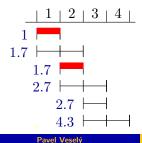
- Packets arrive over time
- Each has a deadline and a weight
- Time discrete, consisting of *slots* or *steps*
- One packet transmitted in each step
- Goal: maximize total weight of scheduled packets

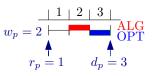


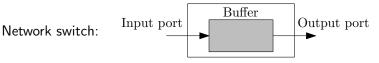




- Packets arrive over time
- Each has a deadline and a weight
- Time discrete, consisting of *slots* or *steps*
- One packet transmitted in each step
- Goal: maximize total weight of scheduled packets

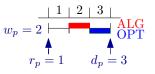






- Packets arrive over time
- Each has a deadline and a weight
- Time discrete, consisting of *slots* or *steps*
- One packet transmitted in each step
- Goal: maximize total weight of scheduled packets

Scheduling problem $1|online, r_j, p_j = 1| \sum w_j(1 - U_j)$ A.k.a. BUFFER MANAGEMENT IN QOS SWITCHES



Competitive ratio of online algorithms

• Algorithm is *R*-competitive if for any instance *I*

 $\mathsf{OPT}(I) \leq R \cdot \mathsf{ALG}(I)$

Competitive ratio of online algorithms

• Algorithm is *R*-competitive if for any instance *I*

 $\mathsf{OPT}(I) \leq R \cdot \mathsf{ALG}(I)$

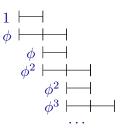
- Game: the algorithm vs. an adversary
 - The adversary decides on further input to maximize OPT/ALG

• We focus on deterministic algorithms

- We focus on deterministic algorithms
- Greedy algorithm 2-competitive
 - Schedules always the heaviest pending packet

- We focus on deterministic algorithms
- Greedy algorithm 2-competitive
 - Schedules always the heaviest pending packet
- Lower bound of the golden ratio $\phi = \frac{1}{2}(\sqrt{5} + 1) \approx 1.618 \text{ [Hájek '01, Andelman et al. '03, Chin & Fung '03]}$

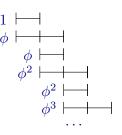
$$\phi + 1 = \phi^2$$



- We focus on deterministic algorithms
- Greedy algorithm 2-competitive
 - Schedules always the heaviest pending packet
- Lower bound of the golden ratio $\phi = \frac{1}{2}(\sqrt{5} + 1) \approx 1.618 \text{ [Hájek '01, Andelman et al. '03, Chin & Fung '03]}$

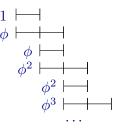
$$\phi + 1 = \phi^2$$

- 1.939-competitive algorithm [Chrobak et al.'04]
- 1.854-competitive algorithm [Li et al.'07]
- 1.828-competitive algorithm [Englert & Westermann '07]



- We focus on deterministic algorithms
- Greedy algorithm 2-competitive
 - Schedules always the heaviest pending packet
- Lower bound of the golden ratio $\phi = \frac{1}{2}(\sqrt{5} + 1) \approx 1.618 \text{ [Hájek '01, Andelman et al. '03, Chin & Fung '03]}$

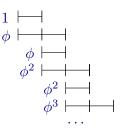
$$\phi + 1 = \phi^2$$



- 1.939-competitive algorithm [Chrobak et al.'04]
- 1.854-competitive algorithm [Li et al.'07]
- 1.828-competitive algorithm [Englert & Westermann '07]
- Ratio ϕ for special instances [Kesselman *et al.* '01, Chin *et al.* '04, Li *et al.* '05, Bienkowski *et al.* '13, Böhm *et al.* '16]

- We focus on deterministic algorithms
- Greedy algorithm 2-competitive
 - Schedules always the heaviest pending packet
- Lower bound of the golden ratio $\phi = \frac{1}{2}(\sqrt{5} + 1) \approx 1.618 \text{ [Hájek '01, Andelman et al. '03, Chin & Fung '03]}$

$$\phi + 1 = \phi^2$$

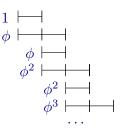


- 1.939-competitive algorithm [Chrobak et al.'04]
- 1.854-competitive algorithm [Li et al.'07]
- 1.828-competitive algorithm [Englert & Westermann '07]
- Ratio ϕ for special instances [Kesselman *et al.* '01, Chin *et al.* '04, Li *et al.* '05, Bienkowski *et al.* '13, Böhm *et al.* '16]

Is there a ϕ -competitive algorithm?

- We focus on deterministic algorithms
- Greedy algorithm 2-competitive
 - Schedules always the heaviest pending packet
- Lower bound of the golden ratio $\phi = \frac{1}{2}(\sqrt{5} + 1) \approx 1.618 \text{ [Hájek '01, Andelman et al. '03, Chin & Fung '03]}$

$$\phi + 1 = \phi^2$$



- 1.939-competitive algorithm [Chrobak et al.'04]
- 1.854-competitive algorithm [Li et al.'07]
- 1.828-competitive algorithm [Englert & Westermann '07]
- Ratio ϕ for special instances [Kesselman *et al.* '01, Chin *et al.* '04, Li *et al.* '05, Bienkowski *et al.* '13, Böhm *et al.* '16]

Is there a $\phi\text{-competitive algorithm}?$

Yes!

Theorem

There is a ϕ -competitive deterministic algorithm.

Theorem

There is a ϕ -competitive deterministic algorithm.

Key technique: Plan

• Max-weight *feasible* subset of pending packets in step t

feasible = can be scheduled in slots t, t + 1, ...

Theorem

There is a ϕ -competitive deterministic algorithm.

Key technique: Plan

- Max-weight *feasible* subset of pending packets in step t
 - feasible = can be scheduled in slots t, t + 1, ...
- Optimal future profit unless new packets arrive

Theorem

There is a ϕ -competitive deterministic algorithm.

Key technique: Plan

- Max-weight *feasible* subset of pending packets in step t
 - feasible = can be scheduled in slots t, t + 1, ...
- Optimal future profit unless new packets arrive
- Scheduled plans (a.k.a. provisional schedules) used already by

[Li et al. '05, Li et al. '07, Englert & Westermann '07]

$\mathsf{Plan}\ \mathcal{P}$

• Max-weight *feasible* subset of pending packets in step t

feasible = can be scheduled in slots t, t + 1, ...

$\mathsf{Plan}\ \mathcal{P}$

• Max-weight *feasible* subset of pending packets in step t

feasible = can be scheduled in slots t, t + 1, ...

Algorithm LESSGREEDY(ϕ)

• Schedule packet $p \in \mathcal{P}$ maximizing $\phi \cdot w_p + w(\mathcal{Q}_p)$

$\mathsf{Plan}\ \mathcal{P}$

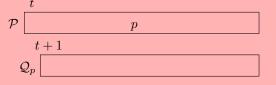
• Max-weight *feasible* subset of pending packets in step t

feasible = can be scheduled in slots t, t + 1, ...

Algorithm LESSGREEDY (ϕ)

• Schedule packet $p \in \mathcal{P}$ maximizing $\phi \cdot w_p + w(\mathcal{Q}_p)$

 \mathcal{Q}_p is the plan after p is scheduled and time is incremented $(p \notin \mathcal{Q}_p)$



$\mathsf{Plan}\ \mathcal{P}$

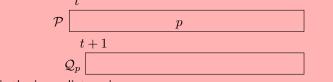
• Max-weight *feasible* subset of pending packets in step t

feasible = can be scheduled in slots t, t + 1, ...

Algorithm LESSGREEDY (ϕ)

• Schedule packet $p \in \mathcal{P}$ maximizing $\phi \cdot w_p + w(\mathcal{Q}_p)$

 \mathcal{Q}_p is the plan after p is scheduled and time is incremented $(p
ot\in \mathcal{Q}_p)$



w_p is the immediate gain

• $w(\mathcal{Q}_p)$ is the optimal *future* profit unless new packets arrive

$\mathsf{Plan}\ \mathcal{P}$

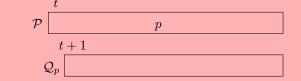
• Max-weight *feasible* subset of pending packets in step t

feasible = can be scheduled in slots t, t + 1, ...

Algorithm LESSGREEDY (ϕ)

• Schedule packet $p \in \mathcal{P}$ maximizing $\phi \cdot w_p + w(\mathcal{Q}_p)$

 \mathcal{Q}_p is the plan after p is scheduled and time is incremented $(p
ot\in \mathcal{Q}_p)$



w_p is the immediate gain

• $w(\mathcal{Q}_p)$ is the optimal *future* profit unless new packets arrive

• Very elegant algorithm ...

$\mathsf{Plan}\ \mathcal{P}$

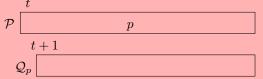
• Max-weight *feasible* subset of pending packets in step t

feasible = can be scheduled in slots t, t + 1, ...

Algorithm LESSGREEDY (ϕ)

• Schedule packet $p \in \mathcal{P}$ maximizing $\phi \cdot w_p + w(\mathcal{Q}_p)$

 \mathcal{Q}_p is the plan after p is scheduled and time is incremented $(p
ot\in \mathcal{Q}_p)$



w_p is the immediate gain

- $w(\mathcal{Q}_p)$ is the optimal *future* profit unless new packets arrive
- Very elegant algorithm ...
- ... but *not* ϕ -competitive

Plan and its Structure

$\mathsf{Plan}\ \mathcal{P}$

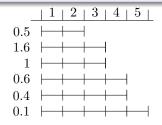
- Max-weight *feasible* subset of pending packets in step *t*
 - feasible = can be scheduled in slots t, t + 1, ...

Plan and its Structure

$\mathsf{Plan}\ \mathcal{P}$

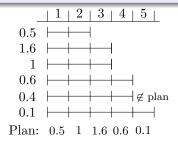
• Max-weight *feasible* subset of pending packets in step *t*

feasible = can be scheduled in slots t, t + 1, ...



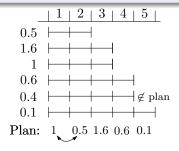
$\mathsf{Plan}\ \mathcal{P}$

• Max-weight *feasible* subset of pending packets in step t



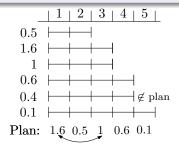
$\mathsf{Plan}\ \mathcal{P}$

• Max-weight *feasible* subset of pending packets in step *t*



$\mathsf{Plan}\ \mathcal{P}$

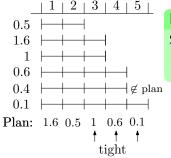
• Max-weight *feasible* subset of pending packets in step t



$\mathsf{Plan}\ \mathcal{P}$

• Max-weight *feasible* subset of pending packets in step t

feasible = can be scheduled in slots t, t + 1, ...



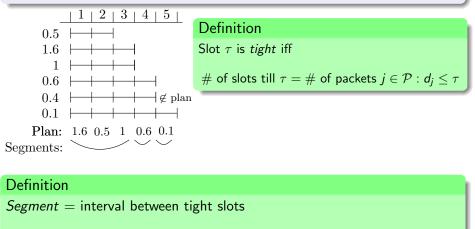
Definition

Slot τ is *tight* iff

$$\#$$
 of slots till $au = \#$ of packets $j \in \mathcal{P} : d_j \leq au$

$\mathsf{Plan}\ \mathcal{P}$

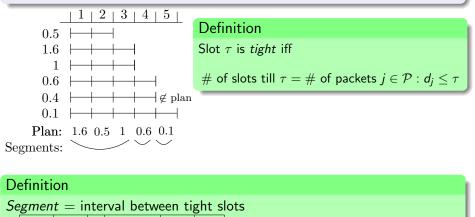
• Max-weight *feasible* subset of pending packets in step t



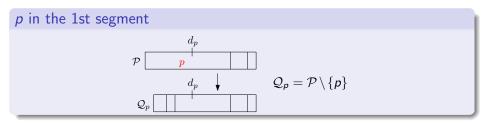
$\mathsf{Plan}\ \mathcal{P}$

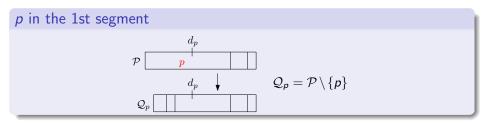
• Max-weight *feasible* subset of pending packets in step t

feasible = can be scheduled in slots t, t + 1, ...

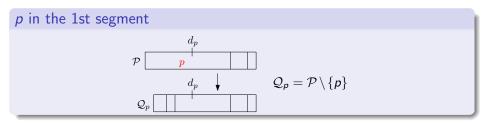


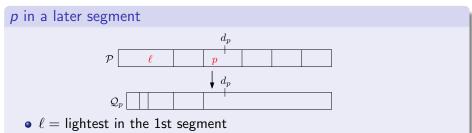
 \mathcal{P}

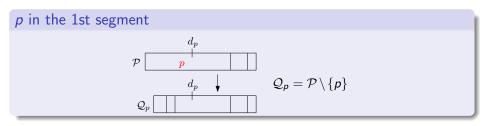


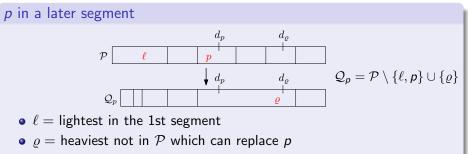


Pavel Veselý





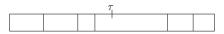




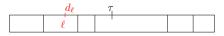
replacement packet for p

• $\mathsf{minwt}(au) = \mathsf{min-weight}$ in $\mathcal P$ that can be on a slot up to au

- $\mathsf{minwt}(au) = \mathsf{min-weight}$ in $\mathcal P$ that can be on a slot up to au
- = min-weight in \mathcal{P} till the next tight slot after τ

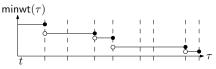


- $\mathsf{minwt}(au) = \mathsf{min-weight}$ in $\mathcal P$ that can be on a slot up to au
- = min-weight in \mathcal{P} till the next tight slot after τ

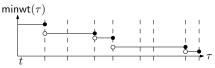


- $\mathsf{minwt}(au) = \mathsf{min-weight}$ in $\mathcal P$ that can be on a slot up to au
- = min-weight in \mathcal{P} till the next tight slot after τ

- $\mathsf{minwt}(au) = \mathsf{min-weight}$ in $\mathcal P$ that can be on a slot up to au
- = min-weight in \mathcal{P} till the next tight slot after τ



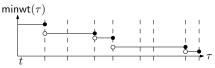
- $\mathsf{minwt}(au) = \mathsf{min}\text{-weight}$ in $\mathcal P$ that can be on a slot up to au
- = min-weight in \mathcal{P} till the next tight slot after τ



$minwt(\tau)$ after plan updates

- for any fixed τ , minwt(τ) does not decrease:
 - after arrival of a new packet
 - after scheduling a packet from the 1st segment

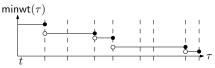
- $\mathsf{minwt}(au) = \mathsf{min}\text{-weight}$ in $\mathcal P$ that can be on a slot up to au
- = min-weight in \mathcal{P} till the next tight slot after τ



$minwt(\tau)$ after plan updates

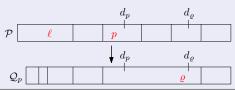
- for any fixed τ , minwt(τ) does not decrease:
 - after arrival of a new packet
 - after scheduling a packet from the 1st segment
- minwt(au) decreases for some au after sch. a packet from later segment

- $\mathsf{minwt}(au) = \mathsf{min}\text{-weight}$ in $\mathcal P$ that can be on a slot up to au
- = min-weight in \mathcal{P} till the next tight slot after τ



$minwt(\tau)$ after plan updates

- for any fixed τ , minwt(τ) does not decrease:
 - after arrival of a new packet
 - after scheduling a packet from the 1st segment
- minwt(au) decreases for some au after sch. a packet from later segment

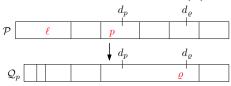


The problem:

$$arrho
ot\in \mathcal{P} \Rightarrow w_arrho < \mathsf{minwt}(d_arrho)$$

• Idea: modify $\text{LessGreedy}(\phi)$ so that $\min wt(\tau)$ never decreases

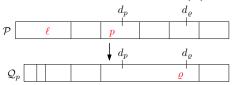
• Idea: modify $\text{LessGreedy}(\phi)$ so that $\min \mathsf{wt}(\tau)$ never decreases



The problem:

 $\varrho \not\in \mathcal{P} \Rightarrow w_{\varrho} < \operatorname{minwt}(d_{\varrho})$

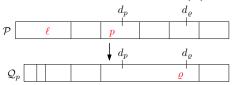
• Idea: modify $\text{LessGreedy}(\phi)$ so that $\min \mathsf{wt}(\tau)$ never decreases



The problem: $\varrho \notin \mathcal{P} \Rightarrow w_{\varrho} < \operatorname{minwt}(d_{\varrho})$

• \Rightarrow increase the weight of ϱ to minwt(d_{ϱ})

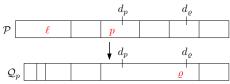
• Idea: modify $\text{LessGreedy}(\phi)$ so that $\text{minwt}(\tau)$ never decreases



The problem: $\varrho \notin \mathcal{P} \Rightarrow w_o < \operatorname{minwt}(d_o)$

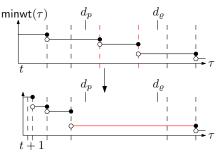
- \Rightarrow increase the weight of ϱ to minwt(d_{ϱ})
- Not enough if segments merge:

• Idea: modify $\text{LessGreedy}(\phi)$ so that $\text{minwt}(\tau)$ never decreases

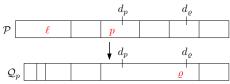


The problem: $\varrho \notin \mathcal{P} \Rightarrow w_{\varrho} < \operatorname{minwt}(d_{\varrho})$

- \Rightarrow increase the weight of ϱ to minwt(d_{ϱ})
- Not enough if segments merge:

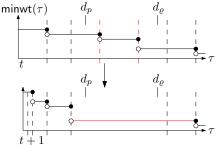


• Idea: modify $\text{LessGreedy}(\phi)$ so that $\min \mathsf{wt}(\tau)$ never decreases



The problem: $\varrho \notin \mathcal{P} \Rightarrow w_{\varrho} < \operatorname{minwt}(d_{\varrho})$

- \Rightarrow increase the weight of ϱ to minwt(d_{ϱ})
- Not enough if segments merge:



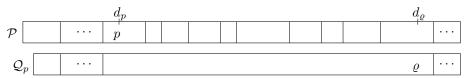
• \Rightarrow avoid merging segments

Pavel Veselý

• Schedule packet $p \in \mathcal{P}$ maximizing $\phi \cdot w_p + w(\mathcal{Q}_p)$

- Schedule packet $p \in \mathcal{P}$ maximizing $\phi \cdot w_p + w(\mathcal{Q}_p)$
- If p is in a later segment of \mathcal{P} :
 - Increase the weight of ρ to minwt(d_{ρ})

- Schedule packet $p \in \mathcal{P}$ maximizing $\phi \cdot w_p + w(\mathcal{Q}_p)$
- If p is in a later segment of \mathcal{P} :
 - Increase the weight of ρ to minwt(d_{ρ})
 - Avoid merging segments:



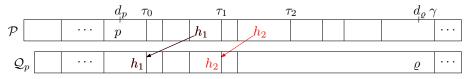
- Schedule packet $p \in \mathcal{P}$ maximizing $\phi \cdot w_p + w(\mathcal{Q}_p)$
- If p is in a later segment of \mathcal{P} :
 - Increase the weight of ρ to minwt(d_{ρ})
 - Avoid merging segments:

h₁ = heaviest packet in (τ₀, γ],

- Schedule packet $p \in \mathcal{P}$ maximizing $\phi \cdot w_p + w(\mathcal{Q}_p)$
- If p is in a later segment of \mathcal{P} :
 - Increase the weight of ρ to minwt(d_{ρ})
 - Avoid merging segments:

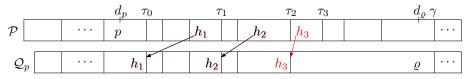
- h_1 = heaviest packet in $(\tau_0, \gamma]$,
- decrease deadline of h_1 to τ_0

- Schedule packet $p \in \mathcal{P}$ maximizing $\phi \cdot w_p + w(\mathcal{Q}_p)$
- If p is in a later segment of \mathcal{P} :
 - Increase the weight of ρ to minwt(d_{ρ})
 - Avoid merging segments:



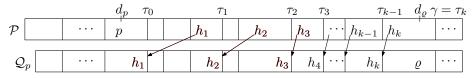
- h₂ = heaviest packet in (τ₁, γ],
- decrease deadline of h_2 to τ_1

- Schedule packet $p \in \mathcal{P}$ maximizing $\phi \cdot w_p + w(\mathcal{Q}_p)$
- If p is in a later segment of \mathcal{P} :
 - Increase the weight of ρ to minwt(d_{ρ})
 - Avoid merging segments:



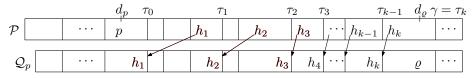
- h₃ = heaviest packet in (τ₂, γ],
- decrease deadline of h_3 to τ_2

- Schedule packet $p \in \mathcal{P}$ maximizing $\phi \cdot w_p + w(\mathcal{Q}_p)$
- If p is in a later segment of \mathcal{P} :
 - Increase the weight of ρ to minwt(d_{ρ})
 - Avoid merging segments:



- for $i = 1, 2, \ldots$: h_i = heaviest packet in $(\tau_{i-1}, \gamma]$,
- decrease deadline of h_i to τ_{i-1}
- stop when $\tau_i = \gamma$

- Schedule packet $p \in \mathcal{P}$ maximizing $\phi \cdot w_p + w(\mathcal{Q}_p)$
- If p is in a later segment of \mathcal{P} :
 - Increase the weight of ρ to minwt(d_{ρ})
 - Avoid merging segments:



- for $i = 1, 2, \ldots$: h_i = heaviest packet in $(\tau_{i-1}, \gamma]$,
- decrease deadline of h_i to τ_{i-1}
- stop when $\tau_i = \gamma$
- if $w_{h_i} < \minwt(\tau_{i-1})$, then increase weight of h_i to $\minwt(\tau_{i-1})$

Goal: $OPT(I) \le \phi \cdot ALG(I)$ for any instance I

Goal: $OPT(I) \le \phi \cdot ALG(I)$ for any instance I

- Increasing weights
 - Algorithm's future profit may get higher

Goal: $OPT(I) \le \phi \cdot ALG(I)$ for any instance I

- Increasing weights
 - Algorithm's future profit may get higher
 - Decrease algorithm's current profit by weight increase

Goal: $OPT(I) \le \phi \cdot ALG(I)$ for any instance I

- Increasing weights
 - Algorithm's future profit may get higher
 - Decrease algorithm's current profit by weight increase
- Ø Modifications of the adversary (optimal) schedule ADV

Goal: $OPT(I) \le \phi \cdot ALG(I)$ for any instance I

- Increasing weights
 - Algorithm's future profit may get higher
 - Decrease algorithm's current profit by weight increase
- Optimization of the adversary (optimal) schedule ADV
- Potential function

Amortization Techniques

- Increasing weights
- **2** Modifications of the adversary (optimal) schedule ADV
- Otential function

Potential function

Advantage of the algorithm over the adversary:

 ${\small \bigcirc} \ \mathcal{P} \setminus \mathsf{ADV} = \mathsf{packets} \text{ in the plan that the adversary will not schedule}$

Amortization Techniques

- Increasing weights
- **2** Modifications of the adversary (optimal) schedule ADV
- Otential function

Potential function

Advantage of the algorithm over the adversary:

- $\textcircled{O} \ \mathcal{P} \setminus \mathsf{ADV} = \mathsf{packets} \text{ in the plan that the adversary will not schedule}$
- 2 $\mathcal{F} = \mathsf{subset}$ of pending packets not in plan \mathcal{P}
 - Candidates for replacement packets

Amortization Techniques

- Increasing weights
- **2** Modifications of the adversary (optimal) schedule ADV
- Otential function

Potential function

Advantage of the algorithm over the adversary:

- $\textcircled{O} \ \mathcal{P} \setminus \mathsf{ADV} = \mathsf{packets} \text{ in the plan that the adversary will not schedule}$
- $\textcircled{O} \mathcal{F} = \mathsf{subset} \text{ of pending packets not in plan } \mathcal{P}$
 - Candidates for replacement packets

$$\mathsf{potential} = \frac{1}{\phi} w \bigg(\mathcal{P} \setminus \mathsf{ADV} \cup \mathcal{F} \bigg)$$

Amortization Techniques

- Increasing weights
- **2** Modifications of the adversary (optimal) schedule ADV
- Otential function

Potential function

Advantage of the algorithm over the adversary:

- $\textcircled{O} \ \mathcal{P} \setminus \mathsf{ADV} = \mathsf{packets} \text{ in the plan that the adversary will not schedule}$
- $\textcircled{O} \mathcal{F} = \mathsf{subset} \text{ of pending packets not in plan } \mathcal{P}$
 - Candidates for replacement packets

$$\mathsf{potential} = rac{1}{\phi} \mathsf{w}igg(\mathcal{P} \setminus \mathsf{ADV} \cup \mathcal{F}igg)$$

Invariant

• set
$$\mathcal{P} \setminus \mathsf{ADV} \cup \mathcal{F}$$
 is feasible

$m \geq 1$ packets sent in each step

- Our algorithm is $\phi pprox 1.618$ -competitive for any $m \ge 1$
- Best upper bound tends to $\frac{e}{e-1} \approx 1.58$ [Chin *et al.* '04]

$m \geq 1$ packets sent in each step

- Our algorithm is $\phi pprox 1.618$ -competitive for any $m \ge 1$
- Best upper bound tends to $\frac{e}{e-1} \approx 1.58$ [Chin *et al.* '04]

• Gap between 1.25 [Chin & Fung '04] and $\frac{e}{e-1} \approx 1.58$ [Chin et al. '04]

$m \geq 1$ packets sent in each step

- Our algorithm is $\phi pprox 1.618$ -competitive for any $m \ge 1$
- Best upper bound tends to $\frac{e}{e-1} \approx 1.58$ [Chin *et al.* '04]

Randomized algorithms 🥮 🐲

• Gap between 1.25 [Chin & Fung '04] and $\frac{e}{e-1} \approx 1.58$ [Chin et al. '04]

Memoryless algorithms

- Is there a lower bound $> \phi$ for memoryless algorithms?
- What is the ratio of LessGREEDY(α)? (Schedule p ∈ P max. α · w_p + w(Q_p))
 - Ratio pprox 1.893 for a similar algorithm [Englert & Westermann '07]

$m \geq 1$ packets sent in each step

- Our algorithm is $\phi pprox 1.618$ -competitive for any $m \ge 1$
- Best upper bound tends to $\frac{e}{e-1} \approx 1.58$ [Chin *et al.* '04]

Randomized algorithms 🥮 🐲

• Gap between 1.25 [Chin & Fung '04] and $\frac{e}{e-1} \approx 1.58$ [Chin et al. '04]

Memoryless algorithms

- Is there a lower bound $> \phi$ for memoryless algorithms?
- What is the ratio of LessGREEDY(α)? (Schedule p ∈ P max. α · w_p + w(Q_p))
 - Ratio pprox 1.893 for a similar algorithm [Englert & Westermann '07]

Thank you!