A ϕ -Competitive Algorithm for Scheduling Packets with Deadlines

Pavel Veselý University of Warwick

Joint work with Marek Chrobak (UC Riverside), Łukasz Jeż (Wrocław), and Jiří Sgall (Charles University, Prague)

> DIMAP Seminar, October 2 To appear in SODA '19

- Introduction to competitive analysis
- Model & result
- Algorithm
- Analysis techniques
- Further research directions

Introduction to competitive analysis

• Each week you make one cabinet

- Each week you make one cabinet
- Customers order cabinets, each order has
 - a deadline
 - a reward

- Each week you make one cabinet
- Customers order cabinets, each order has
 - a deadline
 - a reward
- You have two orders on the table:
 - ▶ *u*: deadline this week, reward 10 000 CZK
 - v: deadline next week, reward 16180 CZK

- Each week you make one cabinet
- Customers order cabinets, each order has
 - a deadline
 - a reward
- You have two orders on the table:
 - ▶ *u*: deadline this week, reward 10 000 CZK
 - v: deadline next week, reward 16180 CZK

1) If you select u, then:

- Each week you make one cabinet
- Customers order cabinets, each order has
 - a deadline
 - a reward
- You have two orders on the table:
 - ▶ *u*: deadline this week, reward 10 000 CZK
 - v: deadline next week, reward 16180 CZK

1) If you select u, then:

- new order v' arrives
 - deadline next week, reward 16180 CZK

- Each week you make one cabinet
- Customers order cabinets, each order has
 - a deadline
 - a reward
- You have two orders on the table:
 - ▶ *u*: deadline this week, reward 10 000 CZK
 - v: deadline next week, reward 16180 CZK

1) If you select u, then:

- new order v' arrives
 - deadline next week, reward 16180 CZK
- only one of v and v' served

- Each week you make one cabinet
- Customers order cabinets, each order has
 - a deadline
 - a reward
- You have two orders on the table:
 - u: deadline this week, reward 10000 CZK
 - v: deadline next week, reward 16180 CZK

1) If you select u, then:

2) If you select v, then:

- new order v' arrives
 - deadline next week, reward 16180 CZK
- only one of v and v' served

- Each week you make one cabinet
- Customers order cabinets, each order has
 - a deadline
 - a reward
- You have two orders on the table:
 - ▶ *u*: deadline this week, reward 10 000 CZK
 - v: deadline next week, reward 16180 CZK

1) If you select u, then:

- new order v' arrives
 - deadline next week, reward 16180 CZK
- only one of v and v' served

2) If you select v, then:

- no order arrives for next week
- *u* expires unserved

- Each week you make one cabinet
- Customers order cabinets, each order has
 - a deadline
 - a reward
- You have two orders on the table:
 - u: deadline this week. reward 10000 CZK
 - ▶ v: deadline next week, reward 16180 CZK

1) If you select *u*, then:

- new order v' arrives
 - deadline next week, reward 16180 CZK
- only one of v and v' served

These are worst-case scenarios

2) If you select v, then:

- no order arrives for next week
- u expires unserved

Online computation	Offline computation
•	•

Online computation

• Input arriving piece by piece

Offline computation

• Whole input available at the beginning

Online computation

- Input arriving piece by piece
- Making decisions without knowing future

- Whole input available at the beginning
- All decisions made at once

Online computation

- Input arriving piece by piece
- Making decisions without knowing future
- Decisions irrevocable

- Whole input available at the beginning
- All decisions made at once

Online computation

- Input arriving piece by piece
- Making decisions without knowing future
- Decisions irrevocable
- Cannot be optimal (usually)

- Whole input available at the beginning
- All decisions made at once
- Find an optimal solution

Online computation

- Input arriving piece by piece
- Making decisions without knowing future
- Decisions irrevocable
- Cannot be optimal (usually)

- Whole input available at the beginning
- All decisions made at once
- Find an optimal solution
- Time/memory efficient algorithms

Online computation

- Input arriving piece by piece
- Making decisions without knowing future
- Decisions irrevocable
- Cannot be optimal (usually)

- Whole input available at the beginning
- All decisions made at once
- Find an optimal solution
- Time/memory efficient algorithms

Online computation

- Input arriving piece by piece
- Making decisions without knowing future
- Decisions irrevocable
- Cannot be optimal (usually)

Offline computation

- Whole input available at the beginning
- All decisions made at once
- Find an optimal solution
- Time/memory efficient algorithms

Online model

• Sequence of events (orders), arrive over time

Online computation

- Input arriving piece by piece
- Making decisions without knowing future
- Decisions irrevocable
- Cannot be optimal (usually)

Offline computation

- Whole input available at the beginning
- All decisions made at once
- Find an optimal solution
- Time/memory efficient algorithms

Online model

- Sequence of *events* (orders), arrive over time
- Algorithm knows only events that arrived so far

Online computation

- Input arriving piece by piece
- Making decisions without knowing future
- Decisions irrevocable
- Cannot be optimal (usually)

Offline computation

- Whole input available at the beginning
- All decisions made at once
- Find an optimal solution
- Time/memory efficient algorithms

Online model

- Sequence of *events* (orders), arrive over time
- Algorithm knows only events that arrived so far
- Some events ask to make *decisions* (Monday mornings)

Online computation

- Input arriving piece by piece
- Making decisions without knowing future
- Decisions irrevocable
- Cannot be optimal (usually)

Offline computation

- Whole input available at the beginning
- All decisions made at once
- Find an optimal solution
- Time/memory efficient algorithms

Online model

- Sequence of *events* (orders), arrive over time
- Algorithm knows only events that arrived so far
- Some events ask to make decisions (Monday mornings)
- Decisions influence the objective function (rewards served orders)

Competitive ratio of online algorithms

- Worst-case ratio between
 - value of the optimum solution OPT and
 - value of the algorithm's solution ALG

Competitive ratio of online algorithms

- Worst-case ratio between
 - value of the optimum solution OPT and
 - value of the algorithm's solution ALG
- Algorithm is *R*-competitive if for any instance *I*

 $OPT(I) \leq R \cdot ALG(I)$

(assuming maximization)

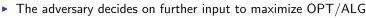
Competitive ratio of online algorithms

- Worst-case ratio between
 - value of the optimum solution OPT and
 - value of the algorithm's solution ALG
- Algorithm is *R*-competitive if for any instance *I*

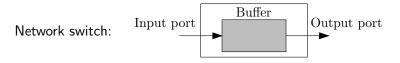
 $OPT(I) \leq R \cdot ALG(I)$

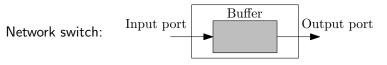
(assuming maximization)

• Game: the algorithm vs. an adversary

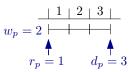


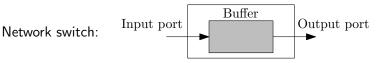
Model & Result



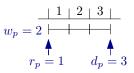


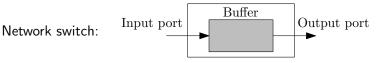
- Packets arrive over time
- Each has a deadline and a weight



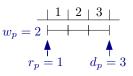


- Packets arrive over time
- Each has a deadline and a weight
- Time discrete, consisting of *slots* or *steps*
- One packet transmitted in each step



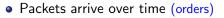


- Packets arrive over time
- Each has a deadline and a weight
- Time discrete, consisting of *slots* or *steps*
- One packet transmitted in each step
- Goal: maximize total weight of scheduled packets



Buffer

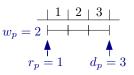
Network switch:



• Each has a deadline and a weight (reward)

Input port

- Time discrete, consisting of *slots* or *steps*
- One packet transmitted in each step (weeks)
- Goal: maximize total weight of scheduled packets



ONLINE PACKET SCHEDULING WITH DEADLINES

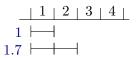
Buffer

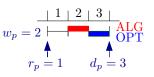
Network switch:

- Packets arrive over time (orders)
- Each has a deadline and a weight (reward)

Input port

- Time discrete, consisting of *slots* or *steps*
- One packet transmitted in each step (weeks)
- Goal: maximize total weight of scheduled packets





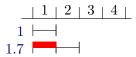
Buffer

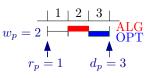
Network switch:

- Packets arrive over time (orders)
- Each has a deadline and a weight (reward)

Input port

- Time discrete, consisting of *slots* or *steps*
- One packet transmitted in each step (weeks)
- Goal: maximize total weight of scheduled packets





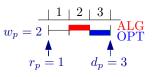
Buffer

Network switch:

- Packets arrive over time (orders)
- Each has a deadline and a weight (reward)

Input port

- Time discrete, consisting of *slots* or *steps*
- One packet transmitted in each step (weeks)
- Goal: maximize total weight of scheduled packets



ONLINE PACKET SCHEDULING WITH DEADLINES

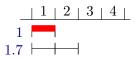
Buffer

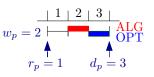
Network switch:

- Packets arrive over time (orders)
- Each has a deadline and a weight (reward)

Input port

- Time discrete, consisting of *slots* or *steps*
- One packet transmitted in each step (weeks)
- Goal: maximize total weight of scheduled packets





Online Packet Scheduling with Deadlines

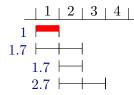
Buffer

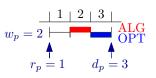
Network switch:

- Packets arrive over time (orders)
- Each has a deadline and a weight (reward)

Input port

- Time discrete, consisting of *slots* or *steps*
- One packet transmitted in each step (weeks)
- Goal: maximize total weight of scheduled packets





Online Packet Scheduling with Deadlines

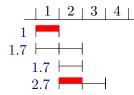
Buffer

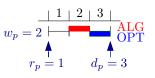
Network switch:

- Packets arrive over time (orders)
- Each has a deadline and a weight (reward)

Input port

- Time discrete, consisting of *slots* or *steps*
- One packet transmitted in each step (weeks)
- Goal: maximize total weight of scheduled packets





ONLINE PACKET SCHEDULING WITH DEADLINES

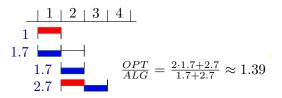
Buffer

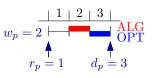
Network switch:

- Packets arrive over time (orders)
- Each has a deadline and a weight (reward)

Input port

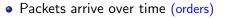
- Time discrete, consisting of *slots* or *steps*
- One packet transmitted in each step (weeks)
- Goal: maximize total weight of scheduled packets





Online Packet Scheduling with Deadlines

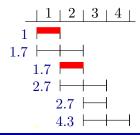
Buffer

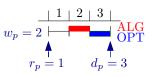


Each has a deadline and a weight (reward)

Input port

- Time discrete, consisting of *slots* or *steps*
- One packet transmitted in each step (weeks)
- Goal: maximize total weight of scheduled packets





ONLINE PACKET SCHEDULING WITH DEADLINES

Buffer

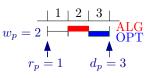
Network switch:

- Packets arrive over time (orders)
- Each has a deadline and a weight (reward)

Input port

- Time discrete, consisting of *slots* or *steps*
- One packet transmitted in each step (weeks)
- Goal: maximize total weight of scheduled packets

Scheduling problem $1|online, r_j, p_j = 1|\sum w_j(1 - U_j)$



ONLINE PACKET SCHEDULING WITH DEADLINES

Buffer

Network switch:

- Packets arrive over time (orders)
- Each has a deadline and a weight (reward)

Input port

- Time discrete, consisting of *slots* or *steps*
- One packet transmitted in each step (weeks)
- Goal: maximize total weight of scheduled packets

Output port

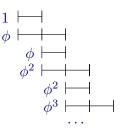
Scheduling problem $1|online, r_j, p_j = 1| \sum w_j(1 - U_j)$ A.k.a. Buffer Management in Quality of Service Switches

• We focus on deterministic algorithms

- We focus on deterministic algorithms
- Greedy algorithm 2-competitive
 - Schedules always the heaviest pending packet

- We focus on deterministic algorithms
- Greedy algorithm 2-competitive
 - Schedules always the heaviest pending packet
- Lower bound of the golden ratio $\phi = \frac{1}{2}(\sqrt{5} + 1) \approx 1.618$ [Hájek '01, Andelman *et al.* '03, Chin & Fung '03]

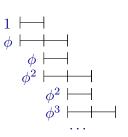
$$1 + \frac{1}{\phi} = \phi$$

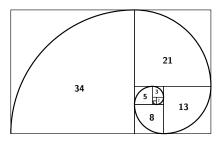


- We focus on deterministic algorithms
- Greedy algorithm 2-competitive
 - Schedules always the heaviest pending packet
- Lower bound of the golden ratio $\phi = \frac{1}{2}(\sqrt{5}+1) \approx 1.618$ [Hájek '01, Andelman *et al.* '03, 1

Chin & Fung '03]

$$1 + \frac{1}{\phi} = \phi$$

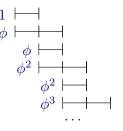




- We focus on deterministic algorithms
- Greedy algorithm 2-competitive
 - Schedules always the heaviest pending packet
- Lower bound of the golden ratio $\phi = \frac{1}{2}(\sqrt{5} + 1) \approx 1.618 \text{ [Hájek '01, Andelman et al. '03, Chin & Fung '03]} \\ 1 + \frac{1}{\phi} = \phi$

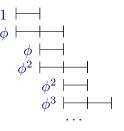
• $2\sqrt{2} - 1 \approx 1.828$ -competitive algorithm [Englert & Westermann '07]

- We focus on deterministic algorithms
- Greedy algorithm 2-competitive
 - Schedules always the heaviest pending packet
- Lower bound of the golden ratio $\phi = \frac{1}{2}(\sqrt{5} + 1) \approx 1.618 \text{ [Hájek '01, Andelman et al. '03, Chin & Fung '03]} \\ 1 + \frac{1}{\phi} = \phi$



- $2\sqrt{2} 1 \approx 1.828$ -competitive algorithm [Englert & Westermann '07]
- φ-competitive algorithms for some special instances [Kesselman et al. '01, Chin et al. '04, Li et al. '05, Bienkowski et al. '13, Böhm et al. '16]

- We focus on deterministic algorithms
- Greedy algorithm 2-competitive
 - Schedules always the heaviest pending packet
- Lower bound of the golden ratio $\phi = \frac{1}{2}(\sqrt{5} + 1) \approx 1.618 \text{ [Hájek '01, Andelman et al. '03, Chin & Fung '03]} \\ 1 + \frac{1}{\phi} = \phi$



- $2\sqrt{2} 1 \approx 1.828$ -competitive algorithm [Englert & Westermann '07]
- φ-competitive algorithms for some special instances [Kesselman et al. '01, Chin et al. '04, Li et al. '05, Bienkowski et al. '13, Böhm et al. '16]

Is there a ϕ -competitive algorithm?

- We focus on deterministic algorithms
- Greedy algorithm 2-competitive
 - Schedules always the heaviest pending packet
- Lower bound of the golden ratio $\phi = \frac{1}{2}(\sqrt{5} + 1) \approx 1.618 \text{ [Hájek '01, Andelman et al. '03, Chin & Fung '03]} \\ 1 + \frac{1}{\phi} = \phi$

1

- $2\sqrt{2} 1 \approx 1.828$ -competitive algorithm [Englert & Westermann '07]
- φ-competitive algorithms for some special instances [Kesselman et al. '01, Chin et al. '04, Li et al. '05, Bienkowski et al. '13, Böhm et al. '16]

Is there a $\phi\text{-competitive algorithm?}$

Yes!

Theorem

There is a ϕ -competitive deterministic algorithm.

Theorem

There is a ϕ -competitive deterministic algorithm.

Key technique: Plan

• Max-weight *feasible* subset of pending packets in step t

Theorem

There is a ϕ -competitive deterministic algorithm.

Key technique: Plan

- Max-weight *feasible* subset of pending packets in step t
 - feasible = can be scheduled in slots t, t + 1, ...
- Optimal future profit unless new packets arrive

Theorem

There is a ϕ -competitive deterministic algorithm.

Key technique: Plan

- Max-weight *feasible* subset of pending packets in step t
 - feasible = can be scheduled in slots t, t + 1, ...
- Optimal future profit unless new packets arrive
- Scheduled plans (a.k.a. provisional schedules) used already by

[Li et al. '05, Li et al. '07, Englert & Westermann '07]

Algorithm

$\mathsf{Plan}\ \mathcal{P}$

• Max-weight *feasible* subset of pending packets in step t

$\mathsf{Plan}\ \mathcal{P}$

• Max-weight *feasible* subset of pending packets in step t

feasible = can be scheduled in slots t, t + 1, ...

Algorithm $PLAN(\phi)$

• Schedule packet $p \in \mathcal{P}$ maximizing $\phi \cdot w_p + w(\mathcal{Q}_p)$

$\mathsf{Plan}\ \mathcal{P}$

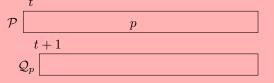
• Max-weight *feasible* subset of pending packets in step t

feasible = can be scheduled in slots t, t + 1, ...

Algorithm $PLAN(\phi)$

• Schedule packet $p \in \mathcal{P}$ maximizing $\phi \cdot w_p + w(\mathcal{Q}_p)$

 \mathcal{Q}_p is the plan after p is scheduled and time is incremented $(p \notin \mathcal{Q}_p)$



$\mathsf{Plan}\ \mathcal{P}$

• Max-weight *feasible* subset of pending packets in step t

feasible = can be scheduled in slots t, t + 1, ...

Algorithm $PLAN(\phi)$ • Schedule packet $p \in \mathcal{P}$ maximizing $\phi \cdot w_p + w(\mathcal{Q}_p)$ \mathcal{Q}_p is the plan after p is scheduled and time is incremented $(p \notin \mathcal{Q}_p)$ pt+1 \mathcal{Q}_n w_p is the gain in this step $w(\mathcal{Q}_p)$ is the optimal *future* profit unless new packets arrive

$\mathsf{Plan}\ \mathcal{P}$

• Max-weight *feasible* subset of pending packets in step t

feasible = can be scheduled in slots t, t + 1, ...

Algorithm $PLAN(\phi)$ • Schedule packet $p \in \mathcal{P}$ maximizing $\phi \cdot w_p + w(\mathcal{Q}_p)$ \mathcal{Q}_p is the plan after p is scheduled and time is incremented $(p \notin \mathcal{Q}_p)$ pt+1 \mathcal{Q}_n w_p is the gain in this step $w(\mathcal{Q}_p)$ is the optimal *future* profit unless new packets arrive

• Very elegant algorithm ...

$\mathsf{Plan}\ \mathcal{P}$

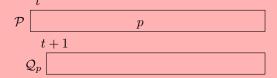
• Max-weight *feasible* subset of pending packets in step t

feasible = can be scheduled in slots t, t + 1, ...

Algorithm $PLAN(\phi)$

• Schedule packet $p \in \mathcal{P}$ maximizing $\phi \cdot w_p + w(\mathcal{Q}_p)$

 \mathcal{Q}_p is the plan after p is scheduled and time is incremented $(p \notin \mathcal{Q}_p)$



w_p is the gain in this step

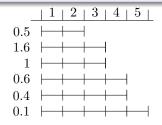
- $w(\mathcal{Q}_p)$ is the optimal *future* profit unless new packets arrive
- Very elegant algorithm ...
- ... but not ϕ -competitive

$\mathsf{Plan}\ \mathcal{P}$

- Max-weight *feasible* subset of pending packets in step *t*
 - feasible = can be scheduled in slots t, t + 1, ...

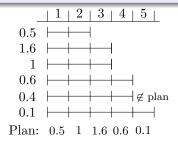
$\mathsf{Plan}\ \mathcal{P}$

• Max-weight *feasible* subset of pending packets in step *t*



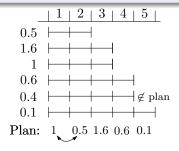
$\mathsf{Plan}\ \mathcal{P}$

• Max-weight *feasible* subset of pending packets in step t



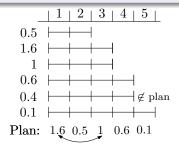
$\mathsf{Plan}\ \mathcal{P}$

• Max-weight *feasible* subset of pending packets in step *t*



$\mathsf{Plan}\ \mathcal{P}$

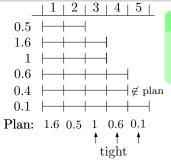
• Max-weight *feasible* subset of pending packets in step *t*



$\mathsf{Plan}\ \mathcal{P}$

• Max-weight *feasible* subset of pending packets in step *t*

feasible = can be scheduled in slots t, t + 1, ...



Definition

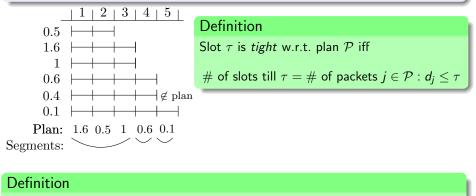
Slot τ is *tight* w.r.t. plan \mathcal{P} iff

$$\#$$
 of slots till $au = \#$ of packets $j \in \mathcal{P} : d_j \leq au$

$\mathsf{Plan}\ \mathcal{P}$

• Max-weight *feasible* subset of pending packets in step t

feasible = can be scheduled in slots t, t + 1, ...

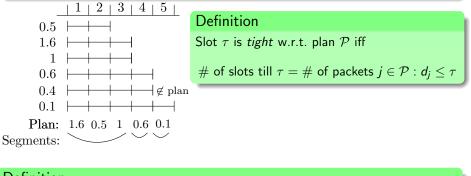


Segment = interval between tight slots

$\mathsf{Plan}\ \mathcal{P}$

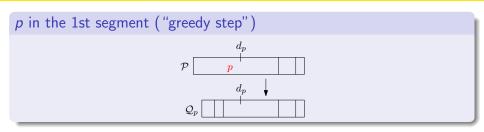
• Max-weight *feasible* subset of pending packets in step t

feasible = can be scheduled in slots t, t + 1, ...

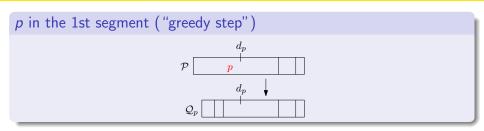


Pavel Veselý

Plan Updates After Packet p is Scheduled

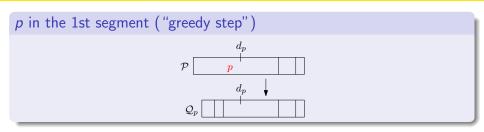


Plan Updates After Packet p is Scheduled

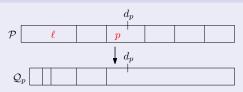


p in a later segment ("leap step")

Plan Updates After Packet p is Scheduled

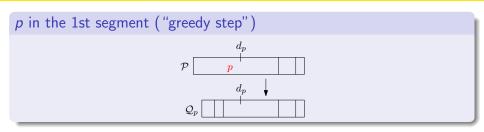


p in a later segment ("leap step")

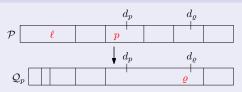


• $\ell =$ lightest in the 1st segment

Plan Updates After Packet p is Scheduled



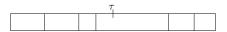
p in a later segment ("leap step")



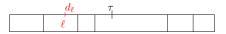
- $\ell =$ lightest in the 1st segment
- ϱ = heaviest not in \mathcal{P} which can replace p
 - replacement packet for p

• minwt(au) = min-weight in ${\mathcal P}$ till the next tight slot after au

- minwt(τ) = min-weight in \mathcal{P} till the next tight slot after τ
 - \blacktriangleright In a schedule of $\mathcal P$, any packet can be in the 1st slot of a segment



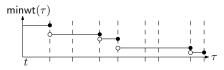
- minwt(τ) = min-weight in \mathcal{P} till the next tight slot after τ
 - \blacktriangleright In a schedule of $\mathcal P$, any packet can be in the 1st slot of a segment



- minwt(τ) = min-weight in \mathcal{P} till the next tight slot after τ
 - \blacktriangleright In a schedule of $\mathcal P$, any packet can be in the 1st slot of a segment



- minwt(au) = min-weight in $\mathcal P$ till the next tight slot after au
 - \blacktriangleright In a schedule of $\mathcal P$, any packet can be in the 1st slot of a segment



- minwt(au) = min-weight in ${\cal P}$ till the next tight slot after au
 - \blacktriangleright In a schedule of $\mathcal P$, any packet can be in the 1st slot of a segment



minwt after plan updates

- minwt(τ) does not decrease for any τ :
 - after arrival of a new packet
 - after scheduling a packet from the 1st segment (greedy step)

- minwt(au) = min-weight in ${\cal P}$ till the next tight slot after au
 - \blacktriangleright In a schedule of $\mathcal P$, any packet can be in the 1st slot of a segment



minwt after plan updates

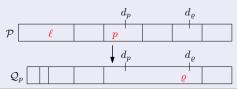
- minwt(τ) does not decrease for any τ :
 - after arrival of a new packet
 - after scheduling a packet from the 1st segment (greedy step)
- minwt(au) decreases for some au after sch. a packet from later segment

- minwt(au) = min-weight in ${\cal P}$ till the next tight slot after au
 - \blacktriangleright In a schedule of $\mathcal P,$ any packet can be in the 1st slot of a segment



minwt after plan updates

- minwt(τ) does not decrease for any τ :
 - after arrival of a new packet
 - after scheduling a packet from the 1st segment (greedy step)
- minwt(au) decreases for some au after sch. a packet from later segment

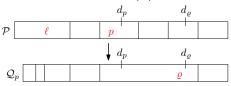


The problem:

$$arrho
ot\in \mathcal{P} \Rightarrow w_arrho < \mathsf{minwt}(d_arrho)$$

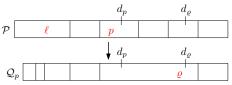
• Idea: modify $\operatorname{PLAN}(\phi)$ so that $\operatorname{minwt}(\tau)$ never decreases for any au

• Idea: modify $PLAN(\phi)$ so that minwt(au) never decreases for any au



The problem: $\varrho \notin \mathcal{P} \Rightarrow w_{\varrho} < \operatorname{minwt}(d_{\varrho})$

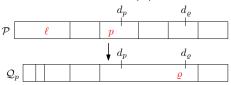
• Idea: modify $\operatorname{PLAN}(\phi)$ so that $\operatorname{minwt}(au)$ never decreases for any au



The problem: $\varrho \notin \mathcal{P} \Rightarrow w_{\rho} < \operatorname{minwt}(d_{\rho})$

• \Rightarrow increase the weight of ϱ to minwt(d_{ϱ})

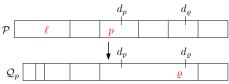
• Idea: modify $PLAN(\phi)$ so that minwt(au) never decreases for any au



The problem: $\varrho \notin \mathcal{P} \Rightarrow w_o < \operatorname{minwt}(d_o)$

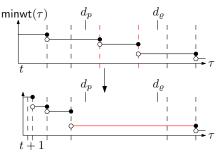
- \Rightarrow increase the weight of ϱ to minwt(d_{ϱ})
- Not enough if segments merge:

• Idea: modify $PLAN(\phi)$ so that minwt(au) never decreases for any au

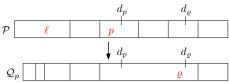


The problem: $\varrho \notin \mathcal{P} \Rightarrow w_o < \operatorname{minwt}(d_o)$

- \Rightarrow increase the weight of ϱ to minwt(d_{ϱ})
- Not enough if segments merge:

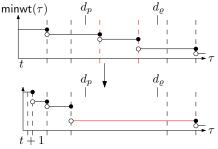


• Idea: modify $\operatorname{PLAN}(\phi)$ so that $\operatorname{minwt}(au)$ never decreases for any au



The problem: $\varrho \notin \mathcal{P} \Rightarrow w_o < \operatorname{minwt}(d_o)$

- \Rightarrow increase the weight of ϱ to minwt(d_{ϱ})
- Not enough if segments merge:



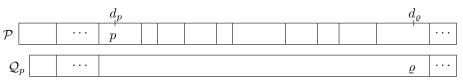
• \Rightarrow avoid merging segments

Pavel Veselý

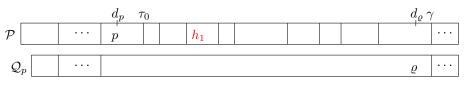
- Schedule packet $p \in \mathcal{P}$ maximizing $\phi \cdot w_p + w(\mathcal{Q}_p)$
 - Q_p is the plan after p is scheduled and time is incremented $(p \notin Q_p)$

- Schedule packet $p \in \mathcal{P}$ maximizing $\phi \cdot w_p + w(\mathcal{Q}_p)$
 - Q_p is the plan after p is scheduled and time is incremented $(p \notin Q_p)$
- If p is not in the 1st segment of \mathcal{P} (leap step):
 - Increase the weight of ρ to minwt(d_{ρ})

- Schedule packet $p \in \mathcal{P}$ maximizing $\phi \cdot w_p + w(\mathcal{Q}_p)$
 - Q_p is the plan after p is scheduled and time is incremented $(p \notin Q_p)$
- If p is not in the 1st segment of \mathcal{P} (leap step):
 - ► Increase the weight of *ρ* to minwt(*d*_ρ)
 - Avoid merging segments:

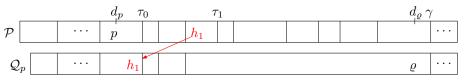


- Schedule packet $p \in \mathcal{P}$ maximizing $\phi \cdot w_p + w(\mathcal{Q}_p)$
 - Q_p is the plan after p is scheduled and time is incremented $(p \notin Q_p)$
- If p is not in the 1st segment of \mathcal{P} (leap step):
 - Increase the weight of *p* to minwt(*d*_p)
 - Avoid merging segments:



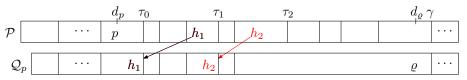
h₁ = heaviest packet in (τ₀, γ],

- Schedule packet $p \in \mathcal{P}$ maximizing $\phi \cdot w_p + w(\mathcal{Q}_p)$
 - Q_p is the plan after p is scheduled and time is incremented $(p \notin Q_p)$
- If p is not in the 1st segment of \mathcal{P} (leap step):
 - Increase the weight of *p* to minwt(*d*_p)
 - Avoid merging segments:



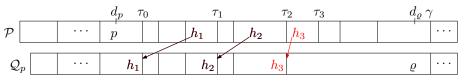
- h₁ = heaviest packet in (τ₀, γ],
- decrease deadline of h_1 to τ_0

- Schedule packet $p \in \mathcal{P}$ maximizing $\phi \cdot w_p + w(\mathcal{Q}_p)$
 - Q_p is the plan after p is scheduled and time is incremented $(p \notin Q_p)$
- If p is not in the 1st segment of \mathcal{P} (leap step):
 - ► Increase the weight of *ρ* to minwt(*d*_ρ)
 - Avoid merging segments:



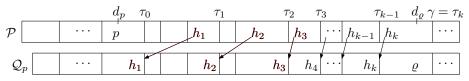
- h₂ = heaviest packet in (τ₁, γ],
- decrease deadline of h_2 to τ_1

- Schedule packet $p \in \mathcal{P}$ maximizing $\phi \cdot w_p + w(\mathcal{Q}_p)$
 - Q_p is the plan after p is scheduled and time is incremented $(p \notin Q_p)$
- If p is not in the 1st segment of \mathcal{P} (leap step):
 - ► Increase the weight of *ρ* to minwt(*d*_ρ)
 - Avoid merging segments:



- h₃ = heaviest packet in (τ₂, γ],
- decrease deadline of h_3 to τ_2

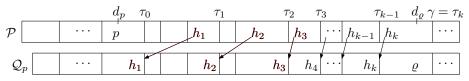
- Schedule packet $p \in \mathcal{P}$ maximizing $\phi \cdot w_p + w(\mathcal{Q}_p)$
 - Q_p is the plan after p is scheduled and time is incremented $(p \notin Q_p)$
- If p is not in the 1st segment of \mathcal{P} (leap step):
 - Increase the weight of *p* to minwt(*d*_p)
 - Avoid merging segments:



• for
$$i = 1, 2, \ldots$$
: h_i = heaviest packet in $(\tau_{i-1}, \gamma]$,

- ▶ decrease deadline of h_i to τ_{i−1}
- stop when $\tau_i = \gamma$

- Schedule packet $p \in \mathcal{P}$ maximizing $\phi \cdot w_p + w(\mathcal{Q}_p)$
 - Q_p is the plan after p is scheduled and time is incremented $(p \notin Q_p)$
- If p is not in the 1st segment of \mathcal{P} (leap step):
 - Increase the weight of *p* to minwt(*d*_p)
 - Avoid merging segments:



• for
$$i = 1, 2, \ldots$$
: h_i = heaviest packet in $(\tau_{i-1}, \gamma]$,

- ▶ decrease deadline of h_i to τ_{i−1}
- stop when $\tau_i = \gamma$
- ensure: $w_{h_i} \geq \min wt(\tau_{i-1})$

* if $w_{h_i} < \minwt(\tau_{i-1})$, then set new weight of h_i to $\minwt(\tau_{i-1})$

- Schedule packet $p \in \mathcal{P}$ maximizing $\phi \cdot w_p + w(\mathcal{Q}_p)$
 - Q_p is the plan after p is scheduled and time is incremented $(p \notin Q_p)$
- If p is not in the 1st segment of \mathcal{P} (leap step):
 - Increase the weight of *ρ* to minwt(*d*_ρ)
- In a nutshell

Avoid merging segments and minwt decreases in a right way

← Done by decreasing deadlines and increasing weights of certain packets

Analysis

- Competitive analysis
 - Goal: $w(OPT) \le \phi \cdot w(ALG)$ for any instance

- Competitive analysis
 - Goal: $w(OPT) \le \phi \cdot w(ALG)$ for any instance
 - Game between algorithm and adversary

★ Adversary schedules packets from OPT

- Competitive analysis
 - Goal: $w(OPT) \le \phi \cdot w(ALG)$ for any instance
 - Game between algorithm and adversary

★ Adversary schedules packets from OPT

Amortization Techniques

- Increasing weights
 - Algorithm's future profit may get higher

- Competitive analysis
 - Goal: $w(OPT) \le \phi \cdot w(ALG)$ for any instance
 - Game between algorithm and adversary

★ Adversary schedules packets from OPT

Amortization Techniques

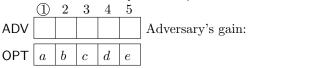
- Increasing weights
 - Algorithm's future profit may get higher
 - Decrease algorithm's current profit by weight increase

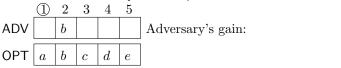
- Competitive analysis
 - Goal: $w(OPT) \le \phi \cdot w(ALG)$ for any instance
 - Game between algorithm and adversary

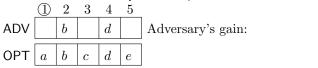
★ Adversary schedules packets from OPT

Amortization Techniques

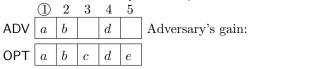
- Increasing weights
 - Algorithm's future profit may get higher
 - Decrease algorithm's current profit by weight increase
- Potential function
- Modifications of the adversary (optimal) schedule ADV



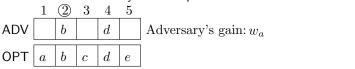




• Consists of already-released packets from OPT in future slots



• Consists of already-released packets from OPT in future slots



• Consists of already-released packets from OPT in future slots 2 3 1 4 5ADV dAdversary's gain: w_a bceOPT dbcea

• Consists of already-released packets from OPT in future slots 23 1 4 5ADV dAdversary's gain: $w_a + w_b$ ceOPT dbcea

• Consists of already-released packets from OPT in future slots (3)1 24 5ADV dAdversary's gain: $w_a + w_b$ ceOPT db cea • Packet in ADV can be replaced by { another *lighter* packet,

• Consists of already-released packets from OPT in future slots (3)1 24 5ADV dAdversary's gain: $w_a + w_b$ ce. OPT db ce• Packet in ADV can be replaced by { another *lighter* packet, fictitious "treasure packets"

- Consists of already-released packets from OPT in future slots 2(3)1 4 -5 ADV dAdversary's gain: $w_a + w_b$ ce. OPT db ce

Packet in ADV can be replaced by fictitious "treasure packets"

Adversary's gain increased by total weight decrease in ADV

- Consists of already-released packets from OPT in future slots 2(3)1 4 -5 Adversary's gain: $w_a + w_b + (w_d - w_f)$ ADV ceOPT db ce

• Packet in ADV can be replaced by {another *lighter* packet, fictitious "treasure packets"

Adversary's gain increased by total weight decrease in ADV

- Consists of already-released packets from OPT in future slots 2(3)51 4
- Adversary's gain: $w_a + w_b + (w_d w_f) + (w_c w_{t_a})$ ADV e. OPT b cde.

• Packet in ADV can be replaced by {another *lighter* packet, fictitious "treasure packets"

Adversary's gain increased by total weight decrease in ADV

- Consists of already-released packets from OPT in future slots 3 1 2 (4)5 Adversary's gain: $w_a + w_b + (w_d - w_f) + (w_c - w_{t_c}) + w_{t_c}$ ADV e. OPT b cde. • Packet in ADV can be replaced by {another *lighter* packet, fictitious "treasure packets"

 - Adversary's gain increased by total weight decrease in ADV

- Consists of already-released packets from OPT in future slots 3 2 (4)5 Adversary's gain: $w_a + w_b + (w_d - w_f) + (w_c - w_{t_c}) + w_{t_c}$ ADV e. OPT b cde.

 - Packet in ADV can be replaced by {another *lighter* packet, fictitious "treasure packets"

Adversary's gain increased by total weight decrease in ADV

Fictitious "treasure packet"

• Not pending for the algorithm

- Consists of already-released packets from OPT in future slots 1 2 3 4 5 ADV f e Adversary's gain: $w_a + w_b + (w_d - w_f) + (w_c - w_{t_c}) + w_{t_c}$ OPT a b c d e
 - Packet in ADV can be replaced by

• Adversary's gain increased by total weight decrease in ADV

- Not pending for the algorithm
- Tied to a slot au in ADV, no release time or deadline, never changes in future

- Consists of already-released packets from OPT in future slots 1 2 3 4 5 ADV fe Adversary's gain: $w_a + w_b + (w_d - w_f) + (w_c - w_{t_c}) + w_{t_c}$ OPT a b c d e
 - Packet in ADV can be replaced by

• Adversary's gain increased by total weight decrease in ADV

- Not pending for the algorithm
- Tied to a slot au in ADV, no release time or deadline, never changes in future
- Deposit of profit to be collected by the adversary

OPT

• Consists of already-released packets from OPT in future slots $1 \quad 2 \quad 3 \quad \textcircled{4} \quad 5$ ADV $f \quad e$ Adversary's gain: $w_a + w_b + (w_d - w_f) + (w_c - w_{t_c}) + w_{t_c}$

• Packet in ADV can be replaced by

e.

d

 $b \mid c$

• Adversary's gain increased by total weight decrease in ADV

- Not pending for the algorithm
- Tied to a slot au in ADV, no release time or deadline, never changes in future
- Deposit of profit to be collected by the adversary
- Weight bounded by $minwt(\tau)$

 Consists of already-released packets from OPT in future slots 3 1 2 (4)5 Adversary's gain: $w_a + w_b + (w_d - w_f) + (w_c - w_{t_a}) + w_{t_c}$ ADV e

OPT db ce.



Adversary's gain increased by total weight decrease in ADV

- Not pending for the algorithm
- Tied to a slot τ in ADV, no release time or deadline, never changes in future
- Deposit of profit to be collected by the adversary
- Weight bounded by minwt(τ)
- Slot-monotonicity: $minwt(\tau)$ never decrease

- Consists of already-released packets from OPT in future slots
- Packet in ADV can be replaced by { another *lighter* packet, fictitious "treasure packets"
- Adversary's gain increased by total weight decrease in ADV

Fictitious "treasure packet"

- Not pending for the algorithm
- Tied to a slot τ in ADV, no release time or deadline, never changes in future
- Deposit of profit to be collected by the adversary
- Weight bounded by minwt(τ)
- Slot-monotonicity: minwt(τ) never decrease

Invariant (A)

ADV consists of two types of packets: $\begin{cases} (real) \text{ packets in plan } P \\ all \text{ other packets are treasures} \end{cases}$

Relative advantage of the algorithm over the adversary:

• $\mathcal{P}\setminus\mathsf{ADV}=\mathsf{packets}$ in the plan that the adversary will not schedule

- $\mathcal{P} \setminus \mathsf{ADV} = \mathsf{packets}$ in the plan that the adversary will not schedule
- Set \mathcal{F}
 - Pending packets forced out of the plan

- $\mathcal{P} \setminus \mathsf{ADV} = \mathsf{packets}$ in the plan that the adversary will not schedule
- $\bullet \ \, \mathsf{Set} \ \, \mathcal{F}$
 - Pending packets forced out of the plan
 - Can be used as replacement packets in a leap step

- $\mathcal{P} \setminus \mathsf{ADV} = \mathsf{packets}$ in the plan that the adversary will not schedule
- $\bullet \ \, \mathsf{Set} \ \, \mathcal{F}$
 - Pending packets forced out of the plan
 - Can be used as replacement packets in a leap step
- "Backup plan" $R = \mathcal{P} \setminus ADV \cup R$

Relative advantage of the algorithm over the adversary:

- $\mathcal{P} \setminus \mathsf{ADV} = \mathsf{packets}$ in the plan that the adversary will not schedule
- $\bullet \ \, \mathsf{Set} \ \, \mathcal{F}$
 - Pending packets forced out of the plan
 - Can be used as replacement packets in a leap step
- "Backup plan" $R = \mathcal{P} \setminus ADV \cup R$

Invariant

Backup plan R is feasible

R feasible = packets in R can be scheduled in future slots $t, t + 1, \dots$

Relative advantage of the algorithm over the adversary:

- $\mathcal{P} \setminus \mathsf{ADV} = \mathsf{packets}$ in the plan that the adversary will not schedule
- $\bullet \ \, {\sf Set} \ \, {\cal F}$
 - Pending packets forced out of the plan
 - Can be used as replacement packets in a leap step
- "Backup plan" $R = \mathcal{P} \setminus ADV \cup R$

Invariant

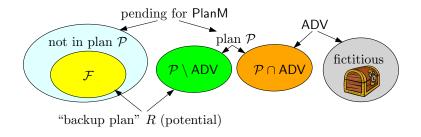
Backup plan R is feasible

R feasible = packets in R can be scheduled in future slots $t, t + 1, \dots$

Potential

$$\Psi := \frac{1}{\phi} w(R)$$

Packet Types in the Analysis



To prove

• Packet arrival: $\Delta \Psi \ge 0$

To prove

- Packet arrival: $\Delta \Psi \ge 0$
- Scheduling step t
 - ▶ j = ADV[t] scheduled by the adversary (possibly $j \neq OPT[t]$)
 - p = ALG[t] scheduled by the algorithm

To prove

- Packet arrival: $\Delta \Psi \ge 0$
- Scheduling step t
 - ▶ j = ADV[t] scheduled by the adversary (possibly $j \neq OPT[t]$)
 - p = ALG[t] scheduled by the algorithm
 - Adversary gain advgain^t = w_i^t + credit for replacing packets

To prove

- Packet arrival: $\Delta \Psi \ge 0$
- Scheduling step t
 - ▶ j = ADV[t] scheduled by the adversary (possibly $j \neq OPT[t]$)
 - p = ALG[t] scheduled by the algorithm
 - Adversary gain advgain^t = w_i^t + credit for replacing packets
 - $\wedge \Delta^t$ Weights = amount by which the weights are increased in step t

 $\operatorname{advgain}^t \leq \phi \cdot (w_p^t - \Delta^t \operatorname{Weights}) + \Delta \Psi$

To prove

- Packet arrival: $\Delta \Psi \ge 0$
- Scheduling step t
 - ▶ j = ADV[t] scheduled by the adversary (possibly $j \neq OPT[t]$)
 - p = ALG[t] scheduled by the algorithm
 - Adversary gain advgain^t = w_i^t + credit for replacing packets
 - $\wedge \Delta^t$ Weights = amount by which the weights are increased in step t

 $\operatorname{advgain}^{t} \leq \phi \cdot (w_{p}^{t} - \Delta^{t}\operatorname{Weights}) + \Delta \Psi$

Proof of ϕ -competitiveness

Potential equal to 0 at the beginning and at the end

To prove

- Packet arrival: $\Delta \Psi \ge 0$
- Scheduling step t
 - ▶ j = ADV[t] scheduled by the adversary (possibly $j \neq OPT[t]$)
 - p = ALG[t] scheduled by the algorithm
 - Adversary gain advgain^t = w_i^t + credit for replacing packets
 - $\wedge \Delta^t$ Weights = amount by which the weights are increased in step t

 $\operatorname{advgain}^t \leq \phi \cdot (w_p^t - \Delta^t \operatorname{Weights}) + \Delta \Psi$

Proof of ϕ -competitiveness

Potential equal to 0 at the beginning and at the end

$$w^0(\mathsf{OPT}) = \sum_t \mathsf{advgain}^t$$

To prove

- Packet arrival: $\Delta \Psi \ge 0$
- Scheduling step t
 - ▶ j = ADV[t] scheduled by the adversary (possibly $j \neq OPT[t]$)
 - p = ALG[t] scheduled by the algorithm
 - Adversary gain advgain^t = w_i^t + credit for replacing packets
 - $\wedge \Delta^t$ Weights = amount by which the weights are increased in step t

 $\operatorname{advgain}^{t} \leq \phi \cdot (w_{\rho}^{t} - \Delta^{t} \operatorname{Weights}) + \Delta \Psi$

Proof of ϕ -competitiveness

• Potential equal to 0 at the beginning and at the end

$$w^{0}(\mathsf{OPT}) = \sum_{t} \mathsf{advgain}^{t} \leq \sum_{t} \left[\phi \cdot (w^{t}(\mathsf{ALG}[t]) - \Delta^{t}\mathsf{Weights}) \right]$$

To prove

- Packet arrival: $\Delta \Psi \ge 0$
- Scheduling step t
 - ▶ j = ADV[t] scheduled by the adversary (possibly $j \neq OPT[t]$)
 - p = ALG[t] scheduled by the algorithm
 - Adversary gain advgain^t = w_i^t + credit for replacing packets
 - $\wedge \Delta^t$ Weights = amount by which the weights are increased in step t

 $\operatorname{advgain}^{t} \leq \phi \cdot (w_{\rho}^{t} - \Delta^{t} \operatorname{Weights}) + \Delta \Psi$

Proof of ϕ -competitiveness

• Potential equal to 0 at the beginning and at the end

$$w^{0}(\mathsf{OPT}) = \sum_{t} \mathsf{advgain}^{t} \leq \sum_{t} \left[\phi \cdot (w^{t}(\mathsf{ALG}[t]) - \Delta^{t}\mathsf{Weights}) \right] \leq \phi \cdot w^{0}(\mathsf{ALG})$$

Conclusions

$\phi \approx$ 1.618-competitive deterministic algorithm

• Schedule packet $p \in \mathcal{P}$ maximizing $\phi \cdot w_p + w(\mathcal{Q}_p)$

 \mathcal{Q}_p is the plan after p is scheduled and time is incremented $(p \notin \mathcal{Q}_p)$

$\phi \approx$ 1.618-competitive deterministic algorithm

- Schedule packet $p \in \mathcal{P}$ maximizing $\phi \cdot w_p + w(\mathcal{Q}_p)$
 - \mathcal{Q}_p is the plan after p is scheduled and time is incremented $(p \notin \mathcal{Q}_p)$
- Maintain slot-monotonicity of minwt
 - Done by increasing weights and decreasing deadlines of certain packets

$\phi \approx$ 1.618-competitive deterministic algorithm

- Schedule packet $p \in \mathcal{P}$ maximizing $\phi \cdot w_p + w(\mathcal{Q}_p)$
 - \mathcal{Q}_p is the plan after p is scheduled and time is incremented $(p \notin \mathcal{Q}_p)$
- Maintain slot-monotonicity of minwt
 - Done by increasing weights and decreasing deadlines of certain packets

Analysis

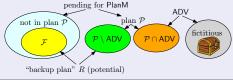
- Potential function
 - Advantage of the algorithm over the adversary in future steps
 - Invariant ensures that this advantage is feasible

$\phi \approx$ 1.618-competitive deterministic algorithm

- Schedule packet $p \in \mathcal{P}$ maximizing $\phi \cdot w_p + w(\mathcal{Q}_p)$
 - \mathcal{Q}_p is the plan after p is scheduled and time is incremented $(p \notin \mathcal{Q}_p)$
- Maintain slot-monotonicity of minwt
 - Done by increasing weights and decreasing deadlines of certain packets

Analysis

- Potential function
 - Advantage of the algorithm over the adversary in future steps
 - Invariant ensures that this advantage is feasible
- Modifications of adversary schedule to maintain certain invariants



$m \geq 1$ packets are sent in each step

- Our algorithm is $\phi pprox 1.618$ -competitive for any $m \ge 1$
- The best algorithm has ratio $\frac{1}{1-(\frac{m}{m+1})^m} \rightarrow \frac{e}{e-1} \approx 1.58$ [Chin *et al.* '04]

• Can our algorithm be modified to give a better ratio for m > 1?

$m \geq 1$ packets are sent in each step

- Our algorithm is $\phi pprox 1.618$ -competitive for any $m \ge 1$
- The best algorithm has ratio $\frac{1}{1-(\frac{m}{m+1})^m} \rightarrow \frac{e}{e-1} \approx 1.58$ [Chin *et al.* '04]
- Can our algorithm be modified to give a better ratio for m > 1?

Randomized algorithms 🥗 🐲

- Improve randomized algorithms using plans
- Gap between 1.25 [Chin & Fung '04] and $\frac{e}{e-1} \approx 1.58$ [Chin et al. '04]

$m \geq 1$ packets are sent in each step

- Our algorithm is $\phi pprox 1.618$ -competitive for any $m \ge 1$
- The best algorithm has ratio $\frac{1}{1-(\frac{m}{m+1})^m} \rightarrow \frac{e}{e-1} \approx 1.58$ [Chin *et al.* '04]
- Can our algorithm be modified to give a better ratio for m > 1?

Randomized algorithms 🥮 🕸

- Improve randomized algorithms using plans
- Gap between 1.25 [Chin & Fung '04] and $\frac{e}{e-1} \approx 1.58$ [Chin *et al.* '04]

Memoryless algorithms

- Is there a lower bound $> \phi$ for memoryless algorithms?
- What is the ratio of $PLAN(\alpha)$? (Schedule $p \in \mathcal{P}$ max. $\alpha \cdot w_p + w(\mathcal{Q}_p)$)

$m \geq 1$ packets are sent in each step

- Our algorithm is $\phi pprox 1.618$ -competitive for any $m \ge 1$
- The best algorithm has ratio $\frac{1}{1-(\frac{m}{m+1})^m} \rightarrow \frac{e}{e-1} \approx 1.58$ [Chin *et al.* '04]
- Can our algorithm be modified to give a better ratio for m > 1?

Randomized algorithms 🥮 🕸

- Improve randomized algorithms using plans
- Gap between 1.25 [Chin & Fung '04] and $\frac{e}{e-1} \approx 1.58$ [Chin *et al.* '04]

Memoryless algorithms

- Is there a lower bound $> \phi$ for memoryless algorithms?
- What is the ratio of PLAN(α)? (Schedule p ∈ P max. α · w_p + w(Q_p))

Thank you!

Pavel Veselý