Online Packet Scheduling with Bounded Delay and Lookahead

Martin Böhm¹, Marek Chrobak², Łukasz Jeż³, Fei Li⁴, Jiří Sgall¹, **Pavel Veselý**¹

¹Charles University, Prague, Czech Republic.

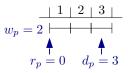
²University of California, Riverside, USA.

³University of Wrocław, Poland.

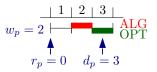
⁴George Mason University, USA.

MAPSP 2017, June 12

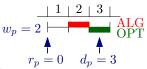
- Also called Buffer Management in Quality of Service Switches
- Unit-length packets arrive over time
- Each packet has a deadline and a weight
- Time discretized to slots

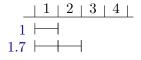


- Also called Buffer Management in Quality of Service Switches
- Unit-length packets arrive over time
- Each packet has a deadline and a weight
- Time discretized to slots

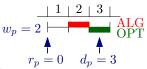


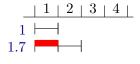
- Also called Buffer Management in Quality of Service Switches
- Unit-length packets arrive over time
- Each packet has a deadline and a weight
- Time discretized to slots
- Goal: maximize total weight of scheduled packets



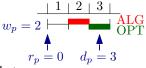


- Also called Buffer Management in Quality of Service Switches
- Unit-length packets arrive over time
- Each packet has a deadline and a weight
- Time discretized to slots
- Goal: maximize total weight of scheduled packets

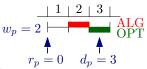


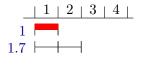


- Also called Buffer Management in Quality of Service Switches
- Unit-length packets arrive over time
- Each packet has a deadline and a weight
- Time discretized to slots
- Goal: maximize total weight of scheduled packets

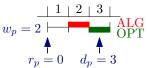


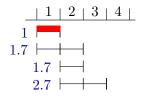
- Also called Buffer Management in Quality of Service Switches
- Unit-length packets arrive over time
- Each packet has a deadline and a weight
- Time discretized to slots
- Goal: maximize total weight of scheduled packets



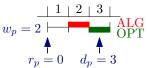


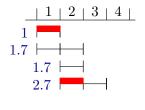
- Also called Buffer Management in Quality of Service Switches
- Unit-length packets arrive over time
- Each packet has a deadline and a weight
- Time discretized to slots
- Goal: maximize total weight of scheduled packets



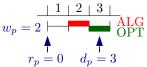


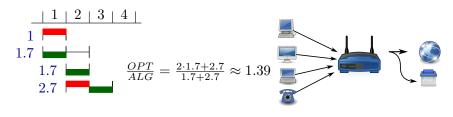
- Also called Buffer Management in Quality of Service Switches
- Unit-length packets arrive over time
- Each packet has a deadline and a weight
- Time discretized to slots
- Goal: maximize total weight of scheduled packets



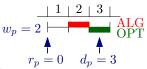


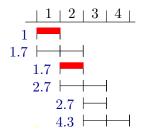
- Also called Buffer Management in Quality of Service Switches
- Unit-length packets arrive over time
- Each packet has a deadline and a weight
- Time discretized to slots
- Goal: maximize total weight of scheduled packets





- Also called Buffer Management in Quality of Service Switches
- Unit-length packets arrive over time
- Each packet has a deadline and a weight
- Time discretized to slots
- Goal: maximize total weight of scheduled packets





Competitive ratio of online algorithms

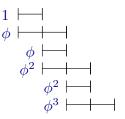
• ALG is R-competitive if for any instance I

$$ALG(I) \geq \frac{1}{R}OPT(I)$$

Previous work

- We focus on deterministic algorithms
- Lower bound of the golden ratio $\phi = \frac{1}{2}(\sqrt{5}+1) \approx 1.618$

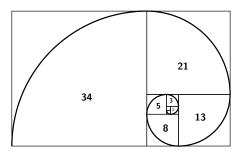
$$1 + \frac{1}{\phi} = \phi$$

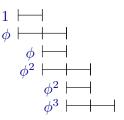


Previous work

- We focus on deterministic algorithms
- Lower bound of the golden ratio $\phi = \frac{1}{2}(\sqrt{5}+1) \approx 1.618$

$$1 + \frac{1}{\phi} = \phi$$



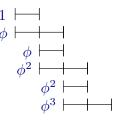


Previous work

- We focus on deterministic algorithms
- Lower bound of the golden ratio $\phi = \frac{1}{2}(\sqrt{5}+1) \approx 1.618$

$$1 + \frac{1}{\phi} = \phi$$

• $2\sqrt{2} - 1 \approx 1.828$ -competitive algorithm by Englert and Westermann



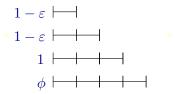
• h = the heaviest packet available in the current slot

- h = the heaviest packet available in the current slot
- EDF_{\u03c6}: *Earliest Deadline First*
 - Schedule the earliest-deadline packet f with $w_f \geq \frac{1}{\phi} w_h$

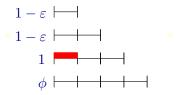
- h = the heaviest packet available in the current slot
- EDF_{\u03c6}: Earliest Deadline First
 - Schedule the earliest-deadline packet f with $w_f \geq \frac{1}{\phi} w_h$
- s-bounded instances
 - Each packet can be scheduled in at most *s* consecutive slots

- h = the heaviest packet available in the current slot
- EDF_{\u03c6}: *Earliest Deadline First*
 - Schedule the earliest-deadline packet f with $w_f \geq \frac{1}{\phi} w_h$
- s-bounded instances
 - Each packet can be scheduled in at most *s* consecutive slots
- φ-competitive for:
 - 2-bounded instances [Kesselman et al. '04]
 - ► 3-bounded instances [Chin et al. '06]

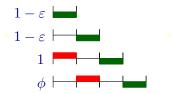
- h = the heaviest packet available in the current slot
- EDF_{\u03c6}: Earliest Deadline First
 - Schedule the earliest-deadline packet f with $w_f \geq \frac{1}{\phi} w_h$
- s-bounded instances
 - Each packet can be scheduled in at most *s* consecutive slots
- φ-competitive for:
 - 2-bounded instances [Kesselman et al. '04]
 - ▶ 3-bounded instances [Chin et al. '06]
 - but not for 4-bounded instances



- h = the heaviest packet available in the current slot
- EDF_{\u03c6}: Earliest Deadline First
 - Schedule the earliest-deadline packet f with $w_f \geq \frac{1}{\phi} w_h$
- s-bounded instances
 - Each packet can be scheduled in at most *s* consecutive slots
- φ-competitive for:
 - 2-bounded instances [Kesselman et al. '04]
 - ▶ 3-bounded instances [Chin et al. '06]
 - but not for 4-bounded instances



- h = the heaviest packet available in the current slot
- EDF_{\u03c6}: Earliest Deadline First
 - Schedule the earliest-deadline packet f with $w_f \geq \frac{1}{\phi} w_h$
- s-bounded instances
 - Each packet can be scheduled in at most *s* consecutive slots
- φ-competitive for:
 - 2-bounded instances [Kesselman et al. '04]
 - 3-bounded instances [Chin et al. '06]
 - but not for 4-bounded instances



Our results

• ϕ -competitive algorithm for 4-bounded instances

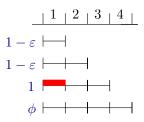
Our results

- $\bullet~\phi\text{-competitive}$ algorithm for 4-bounded instances
- New model with lookahead
 - ℓ -lookahead = at time t algorithm sees packets arriving by time $t + \ell$

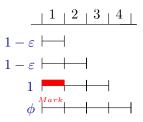
Our results

- ϕ -competitive algorithm for 4-bounded instances
- New model with lookahead
 - ℓ -lookahead = at time t algorithm sees packets arriving by time $t + \ell$
 - Deterministic algorithms for 2-bounded instances
 - 1.303-competitive algorithm with 1-lookahead
 - ► Lower bound for *ℓ*-lookahead

• Modification of EDF_{ϕ}



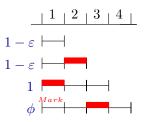
• Modification of EDF_{ϕ}



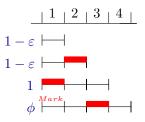
Modification of EDF_φ



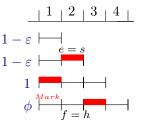
Modification of EDF_φ



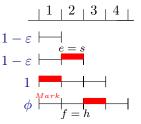
- Modification of EDF_{ϕ}
- *h* = the heaviest packet
- f = the earliest-deadline packet with $w_f \geq \frac{1}{\phi} w_h$



- Modification of EDF_φ
- *h* = the heaviest packet
- n = the heaviest packet $1 \varepsilon \longmapsto e = s$ f = the earliest-deadline packet with $w_f \ge \frac{1}{\phi} w_h$ $1 \varepsilon \longmapsto e = s$
- s = the second-heaviest packet
- e = the earliest-deadline packet with $w_e \geq \frac{1}{\phi^2} w_h$



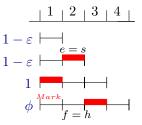
- Modification of EDF_{ϕ}
- *h* = the heaviest packet
- h = the heaviest packet f = the earliest-deadline packet with $w_f \ge \frac{1}{\phi}w_h$ 1ε
- s = the second-heaviest packet
- e = the earliest-deadline packet with $w_e \geq \frac{1}{\phi^2} w_h$



ToggleH

if (*h* marked in the previous step) \land ($w_s < w_h/\phi$) \land ($d_e = t$) schedule e

- Modification of EDF_{ϕ}
- *h* = the heaviest packet
- h = the heaviest packet $1 \varepsilon \longmapsto e = s$ f = the earliest-deadline packet with $w_f \ge \frac{1}{\phi}w_h$ $1 \varepsilon \longmapsto e = s$
- s = the second-heaviest packet
- e = the earliest-deadline packet with $w_e \geq \frac{1}{\phi^2} w_h$

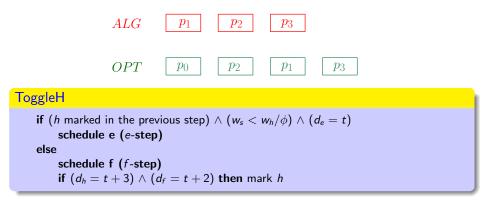


ToggleH

if (*h* marked in the previous step) \land ($w_s < w_h/\phi$) \land ($d_e = t$) schedule e else schedule f if $(d_h = t + 3) \land (d_f = t + 2)$ then mark h

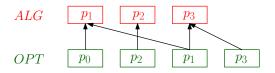
Charging scheme

- Idea: assign the weight of each packet in an optimal schedule to slots in algorithm's schedule.
- Goal: no slot t receives more that ϕw_{p_t}
 - p_t is the packet scheduled at t in ALG.



Charging scheme

- Idea: assign the weight of each packet in an optimal schedule to slots in algorithm's schedule.
- Goal: no slot t receives more that ϕw_{p_t}
 - p_t is the packet scheduled at t in ALG.



ToggleH

if $(h \text{ marked in the previous step}) \land (w_s < w_h/\phi) \land (d_e = t)$ schedule e (e-step) else

schedule f (f-step)
if
$$(d_h = t + 3) \land (d_f = t + 2)$$
 then mark h

Charging scheme

- Idea: assign the weight of each packet in an optimal schedule to slots in algorithm's schedule.
- Goal: no slot t receives more that ϕw_{p_t}
 - *p_t* is the packet scheduled at *t* in ALG.

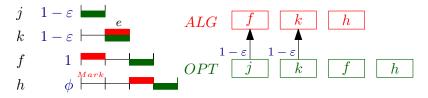


ToggleH

if $(h \text{ marked in the previous step}) \land (w_s < w_h/\phi) \land (d_e = t)$ schedule e (e-step) else

schedule f (f-step)
if
$$(d_h = t + 3) \land (d_f = t + 2)$$
 then mark h

- Idea: assign the weight of each packet in an optimal schedule to slots in algorithm's schedule.
- Goal: no slot t receives more that ϕw_{p_t}
 - *p_t* is the packet scheduled at *t* in ALG.

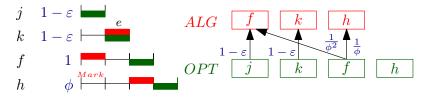


ToggleH

if $(h \text{ marked in the previous step}) \land (w_s < w_h/\phi) \land (d_e = t)$ schedule e (e-step) else

schedule f (f-step)
if
$$(d_h = t + 3) \land (d_f = t + 2)$$
 then mark h

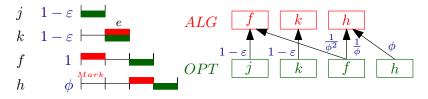
- Idea: assign the weight of each packet in an optimal schedule to slots in algorithm's schedule.
- Goal: no slot t receives more that ϕw_{p_t}
 - *p_t* is the packet scheduled at *t* in ALG.



ToggleH

if $(h \text{ marked in the previous step}) \land (w_s < w_h/\phi) \land (d_e = t)$ schedule e (e-step) else

- Idea: assign the weight of each packet in an optimal schedule to slots in algorithm's schedule.
- Goal: no slot t receives more that ϕw_{p_t}
 - *p_t* is the packet scheduled at *t* in ALG.



ToggleH

if $(h \text{ marked in the previous step}) \land (w_s < w_h/\phi) \land (d_e = t)$ schedule e (e-step)else

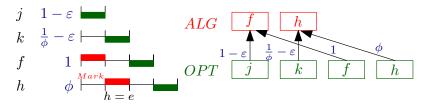
- Idea: assign the weight of each packet in an optimal schedule to slots in algorithm's schedule.
- Goal: no slot t receives more that ϕw_{p_t}
 - *p_t* is the packet scheduled at *t* in ALG.

ToggleH

if (h marked in the previous step) \land ($w_s < w_h/\phi$) \land ($d_e = t$) schedule e (e-step)

else

- Idea: assign the weight of each packet in an optimal schedule to slots in algorithm's schedule.
- Goal: no slot t receives more that ϕw_{p_t}
 - *p_t* is the packet scheduled at *t* in ALG.

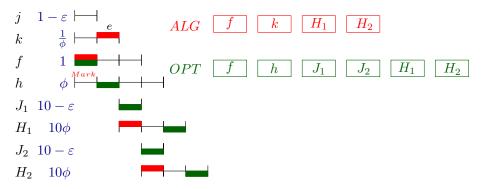


ToggleH

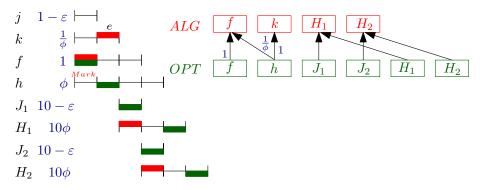
if (h marked in the previous step) \land ($w_s < w_h/\phi$) \land ($d_e = t$) schedule e (e-step)

else

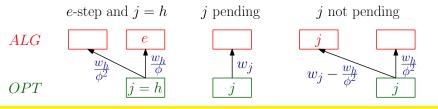
- Idea: assign the weight of each packet in an optimal schedule to slots in algorithm's schedule.
- Goal: no slot t receives more that ϕw_{p_t}
 - *p_t* is the packet scheduled at *t* in ALG.



- Idea: assign the weight of each packet in an optimal schedule to slots in algorithm's schedule.
- Goal: no slot t receives more that ϕw_{p_t}
 - *p_t* is the packet scheduled at *t* in ALG.



- Idea: assign the weight of each packet in an optimal schedule to slots in algorithm's schedule.
- Goal: no slot t receives more that ϕw_{p_t}
 - *p_t* is the packet scheduled at *t* in ALG.

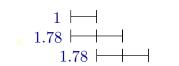


ToggleH

if $(h \text{ marked in the previous step}) \land (w_s < w_h/\phi) \land (d_e = t)$ schedule e (e-step) else

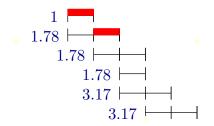
• ℓ -lookahead = at t algorithm sees all packets arriving by time $t + \ell$

- ℓ -lookahead = at t algorithm sees all packets arriving by time $t + \ell$
- Lower bound of $\frac{1}{2(\ell+1)}\left(\sqrt{4\ell^2+8\ell+5}+1\right)$
 - ▶ = ϕ for ℓ = 0, ▶ = $\frac{1}{4}(\sqrt{17} + 1) \approx 1.28$ for ℓ = 1:



- ℓ -lookahead = at t algorithm sees all packets arriving by time $t + \ell$
- Lower bound of $\frac{1}{2(\ell+1)}\left(\sqrt{4\ell^2+8\ell+5}+1\right)$

• =
$$\phi$$
 for $\ell = 0$,
• = $\frac{1}{4}(\sqrt{17} + 1) \approx 1.28$ for $\ell = 1$:



- ℓ -lookahead = at t algorithm sees all packets arriving by time $t + \ell$
- Lower bound of $\frac{1}{2(\ell+1)} \left(\sqrt{4\ell^2 + 8\ell + 5} + 1 \right)$

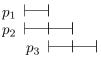
• =
$$\phi$$
 for ℓ = 0,
• = $\frac{1}{4}(\sqrt{17}+1) \approx 1.28$ for ℓ = 1:

- $\frac{1}{2}(\sqrt{13}-1)\approx 1.303$ -competitive algorithm with 1-lookahead • Based on *plan*
 - Optimal schedule of pending or lookahead packets
 - Computed under assumption that no packet will arrive

- ℓ -lookahead = at t algorithm sees all packets arriving by time $t + \ell$
- Lower bound of $\frac{1}{2(\ell+1)} \left(\sqrt{4\ell^2 + 8\ell + 5} + 1 \right)$

• =
$$\phi$$
 for $\ell = 0$,
• = $\frac{1}{4}(\sqrt{17} + 1) \approx 1.28$ for $\ell = 1$:

- $\frac{1}{2}(\sqrt{13}-1)\approx 1.303$ -competitive algorithm with 1-lookahead • Based on *plan*
 - Optimal schedule of pending or lookahead packets
 - Computed under assumption that no packet will arrive
 - This case: plan has 3 packets: p_1, p_2, p_3
 - We schedule p_1 or p_2 .



- ℓ -lookahead = at t algorithm sees all packets arriving by time $t + \ell$
- Lower bound of $\frac{1}{2(\ell+1)} \left(\sqrt{4\ell^2 + 8\ell + 5} + 1 \right)$

• =
$$\phi$$
 for $\ell = 0$,
• = $\frac{1}{4}(\sqrt{17} + 1) \approx 1.28$ for $\ell = 1$:

- $\frac{1}{2}(\sqrt{13}-1)\approx 1.303$ -competitive algorithm with 1-lookahead • Based on *plan*
 - Optimal schedule of pending or lookahead packets
 - Computed under assumption that no packet will arrive

 p_1 p_2

 p_3

- This case: plan has 3 packets: p_1, p_2, p_3
- We schedule p_1 or p_2 .

CompareWithBias(α)

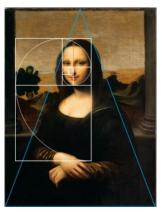
• Design a ϕ -competitive algorithm

- Design a ϕ -competitive algorithm
 - Or find a better lower bound with large span

- Design a ϕ -competitive algorithm
 - Or find a better lower bound with large span
- Design a better than ϕ -competitive algorithm with lookahead

- Design a ϕ -competitive algorithm
 - Or find a better lower bound with large span
- Design a *better* than ϕ -competitive algorithm with lookahead
- Randomization and lookahead

- Design a ϕ -competitive algorithm
 - Or find a better lower bound with large span
- $\bullet\,$ Design a better than $\phi\text{-competitive}$ algorithm with lookahead
- Randomization and lookahead



Thank you!

Randomized algorithms

Against oblivious adversary:

	General	2-bounded	<i>s</i> -bounded
Lower bound	1.25	1.25	1.25
Upper bound	$\frac{e}{e-1} \approx 1.582$	1.25	$\frac{1}{1-(1-\frac{1}{s})^s}$

Against adaptive adversary:

	General	2-bounded	<i>s</i> -bounded
Lower bound	1.333	1.333	1.333
Upper bound	$rac{e}{e-1} pprox 1.582$	1.333	$\frac{1}{1-(1-\frac{1}{s})^s}$