On Packet Scheduling with Adversarial Jamming and Speedup

Martin Böhm¹ Łukasz Jeż² Jiří Sgall¹ Pavel Veselý¹

¹Charles University, Prague, Czech Republic

²University of Wrocław, Poland

Aussios, April 7, 2018

Goal of this talk

Simple online scheduling model with an open problem.

Goal of this talk

Simple online scheduling model with an open problem.

Outline

- Model
- Algorithm
- Local analysis
- Non-local analysis
- Lower bounds

[Anta, Georgiou, Kowalski, Widmer, Zavou '13], [Jurdzinski, Kowalski, Loryś '14]

- Packets of sizes $\ell_1 < \cdots < \ell_k$, released over time, no deadlines
- Single channel (machine), no preemption
- Objective: Total size of completed packets

[Anta, Georgiou, Kowalski, Widmer, Zavou '13], [Jurdzinski, Kowalski, Loryś '14]

- Packets of sizes $\ell_1 < \cdots < \ell_k$, released over time, no deadlines
- Single channel (machine), no preemption
- Objective: Total size of completed packets

[Anta, Georgiou, Kowalski, Widmer, Zavou '13], [Jurdzinski, Kowalski, Loryś '14]

- Packets of sizes $\ell_1 < \cdots < \ell_k$, released over time, no deadlines
- Single channel (machine), no preemption
- Objective: Total size of completed packets

[Anta, Georgiou, Kowalski, Widmer, Zavou '13], [Jurdzinski, Kowalski, Loryś '14]

- Packets of sizes $\ell_1 < \cdots < \ell_k$, released over time, no deadlines
- Single channel (machine), no preemption
- Objective: Total size of completed packets

[Anta, Georgiou, Kowalski, Widmer, Zavou '13], [Jurdzinski, Kowalski, Loryś '14]

- Packets of sizes $\ell_1 < \cdots < \ell_k$, released over time, no deadlines
- Single channel (machine), no preemption
- Objective: Total size of completed packets

[Anta, Georgiou, Kowalski, Widmer, Zavou '13], [Jurdzinski, Kowalski, Loryś '14]

- Packets of sizes $\ell_1 < \cdots < \ell_k$, released over time, no deadlines
- Single channel (machine), no preemption
- Objective: Total size of completed packets

[Anta, Georgiou, Kowalski, Widmer, Zavou '13], [Jurdzinski, Kowalski, Loryś '14]

- Packets of sizes $\ell_1 < \cdots < \ell_k$, released over time, no deadlines
- Single channel (machine), no preemption
- Objective: Total size of completed packets

[Anta, Georgiou, Kowalski, Widmer, Zavou '13], [Jurdzinski, Kowalski, Loryś '14]

- Packets of sizes $\ell_1 < \cdots < \ell_k$, released over time, no deadlines
- Single channel (machine), no preemption
- Objective: Total size of completed packets

[Anta, Georgiou, Kowalski, Widmer, Zavou '13], [Jurdzinski, Kowalski, Loryś '14]

- Packets of sizes $\ell_1 < \cdots < \ell_k$, released over time, no deadlines
- Single channel (machine), no preemption
- Objective: Total size of completed packets

[Anta, Georgiou, Kowalski, Widmer, Zavou '13], [Jurdzinski, Kowalski, Loryś '14]

- Packets of sizes $\ell_1 < \cdots < \ell_k$, released over time, no deadlines
- Single channel (machine), no preemption
- Objective: Total size of completed packets

[Anta, Georgiou, Kowalski, Widmer, Zavou '13], [Jurdzinski, Kowalski, Loryś '14]

- Packets of sizes $\ell_1 < \cdots < \ell_k$, released over time, no deadlines
- Single channel (machine), no preemption
- Objective: Total size of completed packets

[Anta, Georgiou, Kowalski, Widmer, Zavou '13], [Jurdzinski, Kowalski, Loryś '14]

- Packets of sizes $\ell_1 < \cdots < \ell_k$, released over time, no deadlines
- Single channel (machine), no preemption
- Objective: Total size of completed packets

Adversarial errors, immediately known, retransmission possible

Goal

- *R*-competitive algorithms, i.e., $OPT \le R \cdot ALG + C$
- k and ℓ_k are constants, allowed in C

M. Böhm, Ł. Jeż, J. Sgall, P. Veselý Packet Scheduling w. Adversarial Jamming and Speedup

[Anta, Georgiou, Kowalski, Widmer, Zavou '13], [Jurdzinski, Kowalski, Loryś '14]

- Packets of sizes $\ell_1 < \cdots < \ell_k$, released over time, no deadlines
- Single channel (machine), no preemption
- Objective: Total size of completed packets

• Adversarial errors, immediately known, retransmission possible

Goal

- *R*-competitive algorithms, i.e., $OPT \le R \cdot ALG + C$
- k and ℓ_k are constants, allowed in C

We focus on deterministic algorithms only.

M. Böhm, Ł. Jeż, J. Sgall, P. Veselý Packet Scheduling w. Adversarial Jamming and Speedup

General instances

• 3-competitive algorithm

General instances

- 3-competitive algorithm
- a matching lower bound on the comp. ratio

General instances

- 3-competitive algorithm
- a matching lower bound on the comp. ratio

Also more work on restricted instances, with multiple channels, stochastic models etc.

General instances

- 3-competitive algorithm
- a matching lower bound on the comp. ratio

Also more work on restricted instances, with multiple channels, stochastic models etc.

Problem solved ...

General instances

- 3-competitive algorithm but needs to know sizes
- a matching lower bound on the comp. ratio uses only 2 sizes

Also more work on restricted instances, with multiple channels, stochastic models etc.

Problem solved ...

General instances

- 3-competitive algorithm but needs to know sizes
- a matching lower bound on the comp. ratio uses only 2 sizes

Also more work on restricted instances, with multiple channels, stochastic models etc.

Problem solved ...

Speedup for 1-competitiveness on general instances

- a lower bound of 2 [Anta et al. '15]
- but no good algorithm

Speedup s = ALG needs time only ℓ/s to send a packet of size ℓ

Simple generic local analysis

• 3-competitive

Simple generic local analysis

- 3-competitive
- 1-competitive with speedup 6

Simple generic local analysis

- 3-competitive
- 1-competitive with speedup 6
- tradeoffs, better results for restricted instances

Simple generic local analysis

- 3-competitive matching a lower bound
- 1-competitive with speedup 6 not tight
- tradeoffs, better results for restricted instances

Simple generic local analysis

- 3-competitive matching a lower bound
- 1-competitive with speedup 6 not tight
- tradeoffs, better results for restricted instances

Worked hard ...

Simple generic local analysis

- 3-competitive matching a lower bound
- 1-competitive with speedup 6 not tight
- tradeoffs, better results for restricted instances

Worked hard ... took a break ...

Simple generic local analysis

- 3-competitive matching a lower bound
- 1-competitive with speedup 6 not tight
- tradeoffs, better results for restricted instances

Worked hard ... took a break ... worked hard ...

Simple generic local analysis

- 3-competitive matching a lower bound
- 1-competitive with speedup 6 not tight
- tradeoffs, better results for restricted instances

Worked hard ... took a break ... worked hard ... more sophisticated analysis!

Simple generic local analysis

- 3-competitive matching a lower bound
- 1-competitive with speedup 6 not tight
- tradeoffs, better results for restricted instances

Worked hard ... took a break ... worked hard ... more sophisticated analysis!

Upper bound

• 1-competitive with speedup 4 (tight)

Simple generic local analysis

- 3-competitive matching a lower bound
- 1-competitive with speedup 6 not tight
- tradeoffs, better results for restricted instances

Worked hard ... took a break ... worked hard ... more sophisticated analysis!

Upper bound

• 1-competitive with speedup 4 (tight)

Lower bounds

No 1-competitive deterministic algorithm with speedup $s < \phi + 1 pprox 2.618$

Algorithm – Description

Algorithm – Description

Start phase Run packet of the largest size ℓ_j such that $P^{\leq j} < \ell_j$, $P^{\leq j}$: total size of pending packets smaller than ℓ_j .

Algorithm – Description

Start phase Run packet of the largest size ℓ_j such that $P^{\leq j} < \ell_j$, $P^{\leq j}$: total size of pending packets smaller than ℓ_j . Regular step Run packet of the largest size ℓ_j such that $\ell_j \leq S$,

S: total size of packets completed in this phase.

Start phase Run packet of the largest size ℓ_i such that $P^{\leq j} < \ell_i$, $P^{<j}$: total size of pending packets smaller than ℓ_j . Regular step Run packet of the largest size ℓ_i such that $\ell_i \leq S$, S: total size of packets completed in this phase. $S > \ell_i$ ℓ_i ALG: Phase ends when: fault occurs. no packet is pending, or • only packets of size > 5 are pending. buffer: $1 \times \frac{1}{2} 4 \times 1$ 1×4 $8 \times$ 5 ALG:

Start phase Run packet of the largest size ℓ_j such that $P^{\leq j} < \ell_j$, $P^{\leq j}$: total size of pending packets smaller than ℓ_j .

Regular step Run packet of the largest size ℓ_j such that $\ell_j \leq S$, S: total size of packets completed in this phase.

- fault occurs,
- no packet is pending, or
- only packets of size > S are pending.

buffer:
$$1 \times \frac{1}{2} 3 \times 1$$
 1×4 8×5
ALG:

Start phase Run packet of the largest size ℓ_j such that $P^{\leq j} < \ell_j$, $P^{\leq j}$: total size of pending packets smaller than ℓ_j .

Regular step Run packet of the largest size ℓ_j such that $\ell_j \leq S$, S: total size of packets completed in this phase.

- fault occurs,
- no packet is pending, or
- only packets of size > S are pending.

buffer:
$$1 \times \frac{1}{2} 2 \times 1$$
 1×4 8×5
ALG:

Start phase Run packet of the largest size ℓ_j such that $P^{\leq j} < \ell_j$, $P^{\leq j}$: total size of pending packets smaller than ℓ_j .

Regular step Run packet of the largest size ℓ_j such that $\ell_j \leq S$, S: total size of packets completed in this phase.

- fault occurs,
- no packet is pending, or
- only packets of size > S are pending.

buffer:
$$1 \times \frac{1}{2} \times 1 \times 1 \times 4 \times 5$$

ALG:

Start phase Run packet of the largest size ℓ_j such that $P^{\leq j} < \ell_j$, $P^{\leq j}$: total size of pending packets smaller than ℓ_j .

Regular step Run packet of the largest size ℓ_j such that $\ell_j \leq S$, S: total size of packets completed in this phase.

- fault occurs,
- no packet is pending, or
- only packets of size > S are pending.

Start phase Run packet of the largest size ℓ_j such that $P^{\leq j} < \ell_j$, $P^{\leq j}$: total size of pending packets smaller than ℓ_j .

Regular step Run packet of the largest size ℓ_j such that $\ell_j \leq S$, S: total size of packets completed in this phase.

- fault occurs,
- no packet is pending, or
- only packets of size > S are pending.

Start phase Run packet of the largest size ℓ_j such that $P^{\leq j} < \ell_j$, $P^{\leq j}$: total size of pending packets smaller than ℓ_j .

Regular step Run packet of the largest size ℓ_j such that $\ell_j \leq S$, S: total size of packets completed in this phase.

- fault occurs,
- no packet is pending, or
- only packets of size > S are pending.

Start phase Run packet of the largest size ℓ_j such that $P^{\leq j} < \ell_j$, $P^{\leq j}$: total size of pending packets smaller than ℓ_j .

Regular step Run packet of the largest size ℓ_j such that $\ell_j \leq S$, S: total size of packets completed in this phase.

- fault occurs,
- no packet is pending, or
- only packets of size > S are pending.

Algorithm – Properties

Start phase Run packet of the largest size ℓ_j such that $P^{\leq j} < \ell_j$, $P^{\leq j}$: total size of pending packets smaller than ℓ_j .

Regular step Run packet of the largest size ℓ_j such that $\ell_j \leq S$, S: total size of packets completed in this phase.

Nice properties of the new algorithm

- no unnecessary idle time
- the same algorithm for all speeds
- no need to know the speed and packet sizes in advance

Algorithm – Observations

Start phase Run packet of the largest size ℓ_j such that $P^{\leq j} < \ell_j$, $P^{\leq j}$: total size of pending packets smaller than ℓ_j .

Regular step Run packet of the largest size ℓ_j such that $\ell_j \leq S$, S: total size of packets completed in this phase.

 $S > \ell_i$

Algorithm – Observations

Start phase Run packet of the largest size ℓ_j such that $P^{< j} < \ell_j$, $P^{< j}$: total size of pending packets smaller than ℓ_j . Regular step Run packet of the largest size ℓ_j such that $\ell_j \leq S$, S: total size of packets completed in this phase.

Observation: In each phase

If the 1st packet completes:
 size of completed packets ≥ 1/2 of length of the phase.

 ℓ_i

ALG:

• All jobs are completed if no fault or arrival occurs.

Algorithm – Observations

Start phase Run packet of the largest size ℓ_j such that $P^{\leq j} < \ell_j$, $P^{\leq j}$: total size of pending packets smaller than ℓ_j .

Regular step Run packet of the largest size ℓ_j such that $\ell_j \leq S$, S: total size of packets completed in this phase.

Observation: In each phase

- If the 1st packet completes:
 size of completed packets ≥ ¹/₂ of length of the phase.
- All jobs are completed if no fault or arrival occurs.

 $\geq \ell_i$

 If a packet of size ℓ_i is pending during the whole phase, then the size of completed smaller packets is less than 2 · ℓ_i.

ALG:

 $\ell_i < 2\ell_i$

 $< \ell_{i-1}$

Algorithm – Observations

Start phase Run packet of the largest size ℓ_j such that $P^{< j} < \ell_j$, $P^{< j}$: total size of pending packets smaller than ℓ_j .

Regular step Run packet of the largest size ℓ_j such that $\ell_j \leq S$, S: total size of packets completed in this phase.

Observation: In each phase

- If the 1st packet completes:
 size of completed packets ≥ ¹/₂ of length of the phase.
- All jobs are completed if no fault or arrival occurs.

 $\geq \ell_i$

 If a packet of size ℓ_i is pending during the whole phase, then the size of completed smaller packets is less than 2 · ℓ_i.

ALG:

For each size ℓ_i : critical time C_i .

For each size ℓ_i : critical time C_i .

Critical times $C_k \leq C_{k-1} \leq \cdots \leq C_1$ satisfy:

- almost no packets of size ℓ_i pending just before C_i ,
- a packet of size ℓ_i is always pending in $(C_i, C_{i-1}]$.

For each size ℓ_i : critical time C_i .

Critical times $C_k \leq C_{k-1} \leq \cdots \leq C_1$ satisfy:

- almost no packets of size ℓ_i pending just before C_i ,
- a packet of size ℓ_i is always pending in $(C_i, C_{i-1}]$.

For each size ℓ_i : critical time C_i .

Critical times $C_k \leq C_{k-1} \leq \cdots \leq C_1$ satisfy:

- almost no packets of size ℓ_i pending just before C_i ,
- a packet of size ℓ_i is always pending in $(C_i, C_{i-1}]$.

Proof method (for 1-competitiveness)

For each phase within $(C_i, C_{i-1}]$, show that the total size of long packets $(\geq \ell_i)$ completed by ALG is at least that of ADV

For each size ℓ_i : critical time C_i .

Critical times $C_k \leq C_{k-1} \leq \cdots \leq C_1$ satisfy:

- almost no packets of size ℓ_i pending just before C_i ,
- a packet of size ℓ_i is always pending in $(C_i, C_{i-1}]$.

Proof method (for 1-competitiveness)

For each phase within $(C_i, C_{i-1}]$, show that the total size of long packets $(\geq \ell_i)$ completed by ALG is at least that of ADV

For each size ℓ_i : critical time C_i .

Critical times $C_k \leq C_{k-1} \leq \cdots \leq C_1$ satisfy:

- almost no packets of size ℓ_i pending just before C_i ,
- a packet of size ℓ_i is always pending in $(C_i, C_{i-1}]$.

Proof method (for 1-competitiveness)

For each phase within $(C_i, C_{i-1}]$, show that the total size of long packets $(\geq \ell_i)$ completed by ALG is at least that of ADV

For each size ℓ_i : critical time C_i .

Critical times $C_k \leq C_{k-1} \leq \cdots \leq C_1$ satisfy:

- almost no packets of size ℓ_i pending just before C_i ,
- a packet of size ℓ_i is always pending in $(C_i, C_{i-1}]$.

Proof method (for 1-competitiveness)

For each phase within $(C_i, C_{i-1}]$, show that the total size of long packets $(\geq \ell_i)$ completed by ALG is at least that of ADV

For each size ℓ_i : critical time C_i .

Critical times $C_k \leq C_{k-1} \leq \cdots \leq C_1$ satisfy:

- almost no packets of size ℓ_i pending just before C_i ,
- a packet of size ℓ_i is always pending in $(C_i, C_{i-1}]$.

Proof method (for 1-competitiveness)

For each phase within $(C_i, C_{i-1}]$, show that the total size of long packets $(\geq \ell_i)$ completed by ALG is at least that of ADV

Proof method (for 1-competitiveness)

For each phase within $(C_i, C_{i-1}]$, show that the total size of long packets $(\geq \ell_i)$ completed by ALG is at least that of ADV

Proof method (for 1-competitiveness)

For each phase within $(C_i, C_{i-1}]$, show that the total size of long packets $(\geq \ell_i)$ completed by ALG is at least that of ADV

Proof method (for 1-competitiveness)

For each phase within $(C_i, C_{i-1}]$, show that the total size of long packets $(\geq \ell_i)$ completed by ALG is at least that of ADV

Proof method (for 1-competitiveness)

For each phase within $(C_i, C_{i-1}]$, show that the total size of long packets $(\geq \ell_i)$ completed by ALG is at least that of ADV

Proof method (for 1-competitiveness)

For each phase within $(C_i, C_{i-1}]$, show that the total size of long packets $(\geq \ell_i)$ completed by ALG is at least that of ADV

- Y completed as $Y < 2\ell_i$
 - Does not hold for speedup below 4

Proof method (for 1-competitiveness)

For each phase within $(C_i, C_{i-1}]$, show that the total size of long packets $(\geq \ell_i)$ completed by ALG is at least that of ADV

- Y completed as $Y < 2\ell_i$
 - Does not hold for speedup below 4
- It may happen that $X = \ell_{i+1} > \ell_i = Y \dots$

Proof method (for 1-competitiveness)

For each phase within $(C_i, C_{i-1}]$, show that the total size of long packets $(\geq \ell_i)$ completed by ALG is at least that of ADV

- Y completed as $Y < 2\ell_i$
 - Does not hold for speedup below 4
- It may happen that $X = \ell_{i+1} > \ell_i = Y \dots$
 - ... but only if no packet of size ℓ_{i+1} is pending.

Redefine critical times: C'_i satisfy:

• almost no packets of size ℓ_i pending just before C'_i ,

• a packet of size ℓ_i is always pending all the time after C'_i . We may have e.g. $C'_4 > C'_1 > C'_2 = C'_5 > C'_3$.

Redefine critical times: C'_i satisfy:

- almost no packets of size ℓ_i pending just before C'_i ,
- a packet of size ℓ_i is always pending all the time after C'_i . We may have e.g. $C'_4 > C'_1 > C'_2 = C'_5 > C'_3$. Focus on packets of size ℓ_i

Redefine critical times: C'_i satisfy:

- almost no packets of size ℓ_i pending just before C'_i ,
- a packet of size ℓ_i is always pending all the time after C'_i . We may have e.g. $C'_4 > C'_1 > C'_2 = C'_5 > C'_3$. Focus on packets of size ℓ_i

Redefine critical times: C'_i satisfy:

- almost no packets of size ℓ_i pending just before C'_i ,
- a packet of size ℓ_i is always pending all the time after C'_i . We may have e.g. $C'_4 > C'_1 > C'_2 = C'_5 > C'_3$. Focus on packets of size ℓ_i

Focus on packets of size ℓ_i

Focus on packets of size ℓ_i

Focus on packets of size ℓ_i

Focus on packets of size ℓ_i

Focus on packets of size ℓ_i

+ quite a lot of technical work (e.g., phases in which ALG completes no packet)

No deterministic 1-competitive algorithm with speedup <2

Input

- packet sizes 1 and ℓ , all packets arrive at time 0
- # of small packets \gg # of ℓ -packets

No deterministic 1-competitive algorithm with speedup < 2

Adversary strategy in each phase

• If ALG starts ℓ soon, interrupt it and finish more small packets than ALG.

No deterministic 1-competitive algorithm with speedup < 2

Adversary strategy in each phase

- If ALG starts ℓ soon, interrupt it and finish more small packets than ALG.
- Otherwise finish ℓ and make a fault.

No deterministic 1-competitive algorithm with speedup < 2

Adversary strategy in each phase

- If ALG starts ℓ soon, interrupt it and finish more small packets than ALG.
- Otherwise finish ℓ and make a fault.

- packet sizes ε , 1, ϕ , ϕ^2 , ..., ϕ^k ; all arrive at time 0,
- # of smaller packets $\gg \#$ of bigger packets,

- packet sizes ε , 1, ϕ , ϕ^2 , ..., ϕ^k ; all arrive at time 0,
- # of smaller packets $\gg \#$ of bigger packets,
- force ALG to schedule size $\phi 1$ of tiny packets, then one packet of each size 1, ϕ , ...

- packet sizes ε , 1, ϕ , ϕ^2 , ..., ϕ^k ; all arrive at time 0,
- # of smaller packets $\gg \#$ of bigger packets,
- force ALG to schedule size $\phi 1$ of tiny packets, then one packet of each size 1, ϕ , ...

- packet sizes ε , 1, ϕ , ϕ^2 , ..., ϕ^k ; all arrive at time 0,
- # of smaller packets $\gg \#$ of bigger packets,
- force ALG to schedule size $\phi 1$ of tiny packets, then one packet of each size 1, ϕ , ...

+ when ADV completes all packets ϕ^i , then it completes packets < ϕ^i preventing ALG to finish a packet $\geq \phi^i$

• 1-competitive algorithm with speedup s < 4

- 1-competitive algorithm with speedup s < 4
 - Or a lower bound better than $\phi + 1$
 - Do release times change the required speedup?

- 1-competitive algorithm with speedup s < 4
 - Or a lower bound better than $\phi + 1$
 - Do release times change the required speedup?
- Randomization
- Weights (we have $w_p = \ell_p$)

- 1-competitive algorithm with speedup s < 4
 - Or a lower bound better than $\phi + 1$
 - Do release times change the required speedup?
- Randomization
- Weights (we have $w_p = \ell_p$)
- Tradeoffs (e.g., speed vs. competitive ratio)

M. Böhm, Ł. Jeż, J. Sgall, P. Veselý Packet Scheduling w. Adversarial Jamming and Speedup

Problem Algorithm Lower bounds

Local analysis results for special cases

Divisible instances (ℓ_i divides ℓ_{i+1} for each *i*):

• Our algorithm is 1-competitive with speedup 2.5

Problem Algorithm Lower bounds

Local analysis results for special cases

Divisible instances (ℓ_i divides ℓ_{i+1} for each *i*):

• Our algorithm is 1-competitive with speedup 2.5 Well-separated instances:

- $\ell_{i+1} \ge \alpha \ell_i$ for some parameter $\alpha > 1$
- Our algorithm is 1-competitive with speedup S_{α} :

Algorithm for divisible instances

Start phase Run packet of the largest size ℓ_j such that $P^{<j} < \ell_j$, $P^{<j}$: total size of pending packets smaller than ℓ_j . Regular step Run ... largest ℓ_j such that $\ell_j \leq S$ and ℓ_j divides S, S: total size of packets completed in this phase.

Algorithm for divisible instances

Start phase Run packet of the largest size ℓ_j such that $P^{< j} < \ell_j$, $P^{< j}$: total size of pending packets smaller than ℓ_j .

Regular step Run ... largest ℓ_j such that $\ell_j \leq S$ and ℓ_j divides S, S: total size of packets completed in this phase.

- Same properties as the algorithm for general instances
- Key observation: if a packet of size l_i is pending during the whole phase, then the size of completed smaller packets is at most 1 · l_i.

Algorithm for divisible instances

Start phase Run packet of the largest size ℓ_j such that $P^{< j} < \ell_j$, $P^{< j}$: total size of pending packets smaller than ℓ_j .

Regular step Run ... largest ℓ_j such that $\ell_j \leq S$ and ℓ_j divides S, S: total size of packets completed in this phase.

- Same properties as the algorithm for general instances
- Key observation: if a packet of size l_i is pending during the whole phase, then the size of completed smaller packets is at most 1 · l_i.

Results using local analysis

- 2-competitive (optimal),
- 1-competitive with speedup 2 (optimal),
- both algorithmic results also done by [Jurdzinski et al.]