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Department of Computer Science, University of Warwick, Coventry, UK.
{G.Cormode,Pavel.Vesely}@warwick.ac.uk.

Abstract

Problems involving the efficient arrangement of simple objects, as captured by bin packing and
makespan scheduling, are fundamental tasks in combinatorial optimization. These are well under-
stood in the traditional online and offline cases, but have been less well-studied when the volume of
the input is truly massive, and cannot even be read into memory. This is captured by the streaming
model of computation, where the aim is to approximate the cost of the solution in one pass over
the data, using small space. As a result, streaming algorithms produce concise input summaries that
approximately preserve the optimum value.

We design the first efficient streaming algorithms for these fundamental problems in combinator-
ial optimization. For BIN PACKING, we provide a streaming asymptotic 1 + ε-approximation with
Õ
( 1

ε

)
memory, where Õ hides logarithmic factors. Moreover, such a space bound is essentially

optimal. Our algorithm implies a streaming d + ε-approximation for VECTOR BIN PACKING in d
dimensions, running in space Õ

(
d
ε

)
. For the related VECTOR SCHEDULING problem, we show how

to construct an input summary in space Õ(d2 ·m/ε2) that preserves the optimum value up to a factor
of 2− 1

m + ε, where m is the number of identical machines.

1 Introduction

The streaming model captures many scenarios when we must process very large volumes of data, which
cannot fit into the working memory. The algorithm makes one or more passes over the data with a limited
memory, but does not have random access to the data. Thus, it needs to extract a concise summary of
the huge input, which can be used to approximately answer the problem under consideration. The main
aim is to provide a good trade-off between the space used for processing the input stream (and hence,
the summary size) and the accuracy of the (best possible) answer computed from the summary. Other
relevant parameters are the time and space needed to make the estimate, and the number of passes, which
ideally should be equal to one.

While there have been many effective streaming algorithms designed for a range of problems in
statistics, optimization, and graph algorithms (see surveys by Muthukrishnan [38] and McGregor [37]),
there has been little attention paid to the core problems of packing and scheduling. These are fundamental
abstractions, which form the basis of many generalizations and extensions [14, 13]. In this work, we
present the first efficient algorithms for packing and scheduling that work in the streaming model.

A first conceptual challenge is to resolve what form of answer is desirable in this setting. If items
in the input are too many to store, then it is also unfeasible to require a streaming algorithm to provide
an explicit description of how each item is to be handled. Rather, our objective is for the algorithm
to provide the cost of the solution, in the form of the number of bins or the duration of the schedule.
Moreover, many of our algorithms can provide a concise description of the solution, which describes in
outline how the jobs are treated in the design.

A second issue is that the problems we consider, even in their simplest form, are NP-hard. The addi-
tional constraints of streaming computation do not erase the computational challenge. In some cases, our
algorithms proceed by adopting and extending known polynomial-time approximation schemes for the
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offline versions of the problems, while in other cases, we come up with new approaches. The streaming
model effectively emphasizes the question of how compactly can the input be summarized to allow sub-
sequent approximation of the problem of interest. Our main results show that in fact the inputs for many
of our problems of interest can be “compressed” to very small intermediate descriptions which suffice
to extract near-optimal solutions for the original input. This implies that they can be solved in scenarios
which are storage or communication constrained.

We proceed by formalizing the streaming model, after which we summarize our results. We continue
by presenting related work, and contrast with the online setting.

1.1 Problems and Streaming Model

Bin Packing. The BIN PACKING problem is defined as follows: The input consists of N items with
sizes s1, . . . , sN (each between 0 and 1), which need to be packed into bins of unit capacity. That is, we
seek a partition of the set of items {1, . . . , N} into subsetsB1, . . . , Bm, called bins, such that for any bin
Bi, it holds that

∑
j∈Bi sj ≤ 1. The goal is to minimize the number m of bins used.

We also consider the natural generalization to VECTOR BIN PACKING, where the input consists of
d-dimensional vectors, with the value of each coordinate between 0 and 1 (i.e., the scalar items si are
replaced with vectors vi). The vectors need to be packed into d-dimensional bins with unit capacity in
each dimension, we thus require that ‖

∑
v∈Bi v‖∞ ≤ 1 (where, the infinity norm ‖v‖∞ = maxi vi).

Scheduling. The MAKESPAN SCHEDULING problem is closely related to BIN PACKING but, instead
of filling bins with bounded capacity, we try to balance the loads assigned to a fixed number of bins.
Now we refer to the input as comprising a set of jobs, with each job j defined by its processing time pj .
Our goal is to assign each job on one of m identical machines to minimize the makespan, which is the
maximum load over all machines.

In VECTOR SCHEDULING, a job is described not only by its processing time, but also by, say,
memory or bandwidth requirements. The input is thus a set of jobs, each job j characterized by a vector
vj. The goal is to assign each job into one of m identical machines such that the maximum load over all
machines and dimensions is minimized.

Streaming Model. In the streaming scenario, the algorithm receives the input as a sequence of items,
called the input stream. We do not assume that the stream is ordered in any particular way (e.g., randomly
or by item sizes), so our algorithms must work for arbitrarily ordered streams. The items arrive one by
one and upon receiving each item, the algorithm updates its memory state. A streaming algorithm is
required to use space sublinear in the length of the stream, ideally just polylog(N), while it processes
the stream. After the last item arrives, the algorithm computes its estimate of the optimal value, and the
space or time used during this final computation is not restricted.

For many natural optimization problems outputting some explicit solution of the problem is not
possible owing to the memory restriction (as the algorithm can store only a small subset of items). Thus
the goal is to find a good approximation of the value of an offline optimal solution. Since our model does
not assume that item sizes are integers, we express the space complexity not in bits, but in words (or
memory cells), where each word can store any number from the input; a linear combination of numbers
from the input; or any integer with O(logN) bits (for counters, pointers, etc.).

1.2 Our Results

Bin packing. In Section 3, we present a streaming algorithm for BIN PACKING, which outputs an
asymptotic 1 + ε-approximation of OPT, the optimal number of bins, using O

(
1
ε · log 1

ε · log OPT
)

memory. This means that the algorithm uses at most (1 + ε) ·OPT + o(OPT) bins, and in our case, the
additive o(OPT) term is bounded by the space used. The novelty of our contribution is to combine a data
structure that approximately tracks all quantiles in a numeric stream [26] with techniques for approxim-
ation schemes [18, 33]. We show that we can improve upon the log OPT factor in the space complexity
if randomization is allowed or if item sizes are drawn from a bounded-size set of real numbers. On the
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other hand, we argue that our result is close to optimal, up to a factor of O
(
log 1

ε

)
, if item sizes are

accessed only by comparisons (including comparisons with some fixed constants). Thus, one cannot get
an estimate with at most OPT+o(OPT) bins by a streaming algorithm, unlike in the offline setting [28].
The hardness emerges from the space complexity of the quantiles problem in the streaming model.

For VECTOR BIN PACKING, we design a streaming asymptotic d+ ε-approximation algorithm run-
ning in space O

(
d
ε · log d

ε · log OPT
)

; see Section 3.3. We remark that if vectors are rounded into a
sublinear number of types, then better than d-approximation is not possible [7].

Scheduling. For MAKESPAN SCHEDULING, one can obtain a straightforward streaming 1 + ε-appro-
ximation1 with space of only O(1

ε · log 1
ε ) by rounding sizes of suitably large jobs to powers of 1 + ε

and counting the total size of small jobs. In a higher dimension, it is also possible to get a streaming
1 + ε-approximation, by the rounding introduced by Bansal et al. [8]. However, the memory required

for this algorithm is exponential in d, precisely of size O
((

1
ε log d

ε

)d)
, and thus only practical when d

is a very small constant. Moreover, such a huge amount of memory is needed even if the number m of
machines (and hence, of big jobs) is small as the algorithm rounds small jobs into exponentially many
types. See Section 4.2 for more details.

In case m and d make this feasible, we design a new streaming
(
2− 1

m + ε
)

-approximation with

O
(

1
ε2 · d2 ·m · log d

ε

)
memory, which implies a 2-approximation streaming algorithm running in space

O(d2 ·m3 · log dm). We thus obtain a much better approximation than for VECTOR BIN PACKING with
a reasonable amount of memory (although to compute the actual makespan from our input summary, it
takes time doubly exponential in d [8]). Our algorithm is not based on rounding, as in the aforemen-
tioned algorithms, but on combining small jobs into containers, and the approximation guarantee of this
approach is at least 2− 1

m , which we demonstrate by an example. We describe the algorithm for VECTOR

SCHEDULING in Section 4.

2 Related Work

We give an overview of related work in offline, online, and sublinear algorithms, and highlight the
differences between online and streaming algorithms. Recent surveys of Christensen et al. [13] and
Coffman et al. [14] have a more comprehensive overview.

2.1 Bin Packing

Offline approximation algorithms. BIN PACKING is an NP-complete problem and indeed it is NP-
hard even to decide whether two bins are sufficient or at least three bins are necessary. This follows by
a simple reduction from the PARTITION problem and presents the strongest inapproximability to date.
Most work in the offline model focused on providing asymptoticR-approximation algorithms, which use
at most R ·OPT + o(OPT) bins. In the following, when we refer to an approximation for BIN PACKING

we implicitly mean the asymptotic approximation. The first polynomial-time approximation scheme
(PTAS), that is, a 1+ε-approximation for any ε > 0, was given by Fernandez de la Vega and Lueker [18].
Karmarkar and Karp [33] provided an algorithm which returns a solution with OPT+O(log2 OPT) bins.
Recently, Hoberg and Rothvoß [28] proved it is possible to find a solution with OPT+O(log OPT) bins
in polynomial time.

The input for BIN PACKING can be described by N numbers, corresponding to item sizes. While in
general these sizes may be distinct, in some cases the input description can be compressed significantly
by specifying the number of items of each size in the input. Namely, in the HIGH-MULTIPLICITY BIN

PACKING problem, the input is a set of pairs (a1, s1), . . . , (aσ, sσ), where for i = 1, . . . , σ, ai is the
number of items of size si (and all si’s are distinct). Thus, σ encodes the number of item sizes, and

1Unlike for BIN PACKING, an additive constant or even an additive o(OPT) term does not help in the definition of the
approximation ratio, since we can scale every number on input by any α > 0 and OPT scales by α as well.
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hence the size of the description. The goal is again to pack these items into bins, using as few bins as
possible. For constant number of sizes, σ, Goemans and Rothvoß [24] recently gave an exact algorithm
for the case of rational item sizes running in time (log ∆)2O(σ)

, where ∆ is the largest multiplicity of an
item or the largest denominator of an item size, whichever is the greater.

While these algorithms provide satisfying theoretical guarantees, simple heuristics are often adopted
in practice to provide a “good-enough” performance. FIRST FIT [32], which puts each incoming item
into the first bin where it fits and opens a new bin only when the item does not fit anywhere else achieves
1.7-approximation [16]. For the high-multiplicity variant, using an LP-based Gilmore-Gomory cutting
stock heuristic [22, 23] gives a good running time in practice [2] and produces a solution with at most
OPT + σ bins. However, neither of these algorithms adapts well to the streaming setting with possibly
distinct item sizes. For example, FIRST FIT has to remember the remaining capacity of each open bin,
which in general can require space proportional to OPT.

VECTOR BIN PACKING proves to be substantially harder to approximate, even in a constant dimen-
sion. For fixed d, Bansal, Eliáš, and Khan [7] showed an approximation factor of≈ 0.807+ln(d+1)+ε.
For general d, a relatively simple algorithm based on an LP relaxation, due to Chekuri and Khanna [11],
remains the best known, with an approximation guarantee of 1 + εd +O(log 1

ε ). The problem is APX-
hard even for d = 2 [40], and cannot be approximated within a factor better than d1−ε for any fixed
ε > 0 [13] if d is arbitrarily large. Hence, our streaming d + ε-approximation for VECTOR BIN PACK-
ING asymptotically achieves the offline lower bound.

Sampling-based algorithms. Sublinear-time approximation schemes constitute a model related to, but
distinct from, streaming algorithms. Batu, Berenbrink, and Sohler [9] provide an algorithm that takes
Õ
(√

N · poly(1
ε )
)

weighted samples, meaning that the probability of sampling an item is proportional
to its size. It outputs an asymptotic 1 + ε-approximation of OPT. If uniform samples are also available,
then sampling Õ

(
N1/3 · poly(1

ε )
)

items is sufficient. These results are tight, up to a poly(1
ε , logN)

factor. Later, Beigel and Fu [10] focused on uniform sampling of items, proving that Θ̃(N/SIZE)
samples are sufficient and necessary, where SIZE is the total size of all items. Their approach implies
a streaming approximation scheme by uniform sampling of the substream of big items. However, the
space complexity in terms of 1

ε is not stated in the paper, but we calculate this to be Ω (ε−c) for a
constant c ≥ 10. Moreover, Ω( 1

ε2 ) samples are clearly needed to estimate the number of items with
size close to 1. Note that our approach is deterministic and substantially different than taking a random
sample from the stream.

Online algorithms. Online and streaming algorithms are similar in the sense that they are required to
process items one by one. However, an online algorithm must make all its decisions immediately —
it must fix the placement of each incoming item on arrival.2 A streaming algorithm can postpone such
decisions to the very end, but is required to keep its memory small, whereas an online algorithm may
remember all items that have arrived so far. Hence, online algorithms apply in the streaming setting only
when they have small space cost, including the space needed to store the solution constructed so far. The
approximation ratio of online algorithms is quantified by the competitive ratio.

For BIN PACKING, the best possible competitive ratio is substantially worse than what we can achieve
offline or even in the streaming setting. Balogh et al. [5] designed an asymptotically 1.5783-competitive
algorithm, while the current lower bound on the asymptotic competitive ratio is 1.5403 [6]. This (relat-
ively complicated) online algorithm is based on the HARMONIC algorithm [35], which for some integer
K classifies items into size groups (0, 1

K ], ( 1
K ,

1
K−1 ], . . . , (1

2 , 1]. It packs each group separately by NEXT

FIT, keeping just one bin open, which is closed whenever the next item does not fit. Thus HARMONIC

can run in memory of size K, unlike most other online algorithms which require maintaining the levels
of all bins opened so far. Its competitive ratio tends to approximately 1.691 as K goes to infinity. Sur-
prisingly, this is also the best possible ratio if only a bounded number of bins is allowed to be open for
an online algorithm [35], which can be seen as the intersection of online and streaming algorithms.

For VECTOR BIN PACKING, the best known competitive ratio of d+ 0.7 [20] is achieved by FIRST

2Relaxations which allow a limited amount of “repacking” have also been considered [17].
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FIT. A lower bound of Ω(d1−ε) on the competitive ratio was shown by Azar et al. [3]. It is thus currently
unknown whether or not online algorithms outperform streaming algorithms in the vector setting.

2.2 Scheduling

Offline approximation algorithms. MAKESPAN SCHEDULING is strongly NP-complete [21], which
in particular rules out the possibility of a PTAS with time complexity poly(1

ε , n). After a sequence of

improvements, Jansen, Klein, and Verschae [31] gave a PTAS with time complexity 2Õ(1/ε)+O(n logn),
which is essentially tight under the Exponential Time Hypothesis (ETH) [12].

For constant dimension d, VECTOR SCHEDULING also admits a PTAS, as shown by Chekuri and

Khanna [11]. However, the running time is of order n(1/ε)Õ(d)
. The approximation scheme for a fixed

d was improved to an efficient PTAS, namely to an algorithm running in time 2(1/ε)Õ(d) + O(dn),
by Bansal et al. [8], who also showed that the running time cannot be significantly improved under
ETH. In contrast our streaming poly(d,m)-space algorithm computes an input summary maintaining
2-approximation of the original input. This respects the lower bound, since to compute the actual
makespan from the summary, we still need to execute an offline algorithm, with running time doubly
exponential in d. The best known approximation ratio for large d is O(log d/(log log d)) [27, 30], while
α-approximation is not possible in polynomial time for any constant α > 1 and arbitrary d, unless NP =
ZPP.

Online algorithms. For the scalar problem, the optimal competitive ratio is known to lie in the interval
(1.88, 1.9201) [1, 25, 29, 19], which is substantially worse than what can be done by a simple streaming
1 + ε-approximation in space O(1

ε · log 1
ε ). Interestingly, for VECTOR SCHEDULING, the algorithm

by Im et al. [30] with ratio O(log d/(log log d)) actually works in the online setting as well and needs
space O(d ·m) only during its execution (if the solution itself is not stored), which makes it possible to
implement it in the streaming setting. This online ratio cannot be improved as there is a lower bound of
Ω(log d/(log log d)) [30, 4], whereas in the streaming setting we can achieve a 2-approximation with a
reasonable memory (or even 1 + ε for a fixed d). If all jobs have sufficiently small size, we improve the
analysis in [30] and show that the online algorithm achieves 1 + ε-approximation; see Section 4.

3 Bin Packing

Notation. For an instance I , let N(I) be the number of items in I , let SIZE(I) be the total size of all
items in I , and let OPT(I) be the number of bins used in an optimal solution for I . Clearly, SIZE(I) ≤
OPT(I). For a bin B, let s(B) be the total size of items in B. For a given ε > 0, we use Õ(f(1

ε )) to
hide factors logarithmic in 1

ε and OPT(I), i.e., to denote O
(
f(1

ε ) · polylog 1
ε · polylog OPT(I)

)
.

Overview. We first briefly describe the approximation scheme of Fernandez de la Vega and Lueker [18],
whose structure we follow in outline. Let I be an instance of BIN PACKING. Given a precision require-
ment ε > 0, we say that an item is small if its size is at most ε; otherwise, it is big. Note that there
are at most 1

εSIZE(I) big items. The rounding scheme in [18], called “linear grouping”, works as fol-
lows: We sort the big items by size non-increasingly and divide them into groups of k = bε · SIZE(I)c
items (the first group thus contains the k biggest items). In each group, we round up the sizes of all
items to the size of the biggest item in that group. It follows that the number of groups and thus the
number of distinct item sizes (after rounding) is bounded by d 1

ε2 e. Let IR be the instance of HIGH-
MULTIPLICITY BIN PACKING consisting of the big items with rounded sizes. It can be shown that
OPT(IB) ≤ OPT(IR) ≤ (1 + ε) · OPT(IB), where IB is the set of big items in I (we detail a similar
argument in Section 3.1). Due to the bounded number of distinct item sizes, we can find a close-to-
optimal solution for IR efficiently. We then translate this solution into a packing for IB in the natural
way. Finally, small items are filled greedily (e.g., by First Fit) and it can be shown that the resulting
complete solution for I is a 1 +O(ε)-approximation.
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Karmarkar and Karp [33] proposed an improved rounding scheme, called “geometric grouping”. It
is based on the observation that item sizes close to 1 should be approximated substantially better than
item sizes close to ε. We present a version of such a rounding scheme in Section 3.1.2.

Our algorithm follows a similar outline with two stages (rounding and finding a solution for the
rounded instance), but working in the streaming model brings two challenges: First, in the rounding
stage, we need to process the stream of items and output a rounded high-multiplicity instance with few
item sizes that are not too small, while keeping only a small number of items in the memory. Second, the
rounding of big items needs to be done carefully so that not much space is “wasted”, since in the case
when the total size of small items is relatively large, we argue that our solution is close to optimal by
showing that the bins are nearly full on average.

Input summary properties. More precisely, we fix some ε > 0 that is used to control the approxim-
ation guarantee. During the first stage, our algorithm has one variable which accumulates the total size
of all small items in the input stream, i.e., those of size at most ε. Let IB be the substream consisting
of all big items. We process IB and output a rounded high-multiplicity instance IR with the following
properties:
(P1) There are at most σ item sizes in IR, all of them larger than ε, and the memory required for

processing IB is O(σ).
(P2) The i-th biggest item in IR is at least as large as the i-th biggest item in IB (and the number of

items in IR is the same as in IB). This immediately implies that
• Any packing of IR can be used as a packing of IB (in the same number of bins),
• OPT(IB) ≤ OPT(IR), and
• SIZE(IB) ≤ SIZE(IR).

(P3) OPT(IR) ≤ (1 + ε) ·OPT(IB) +O(log 1
ε ).

(P4) SIZE(IR) ≤ (1 + ε) · SIZE(IB).
In words, (P2) means that we are rounding item sizes up and, together with (P3), it implies that the

optimal solution for the rounded instance approximates OPT(IB) well. The last property is used in the
case when the total size of small items constitutes a large fraction of the total size of all items. Note that
SIZE(IR)− SIZE(IB) can be thought of as bin space “wasted” by rounding.

Observe that the succinctness of the rounded instance depends on σ. First, we show a streaming
algorithm for rounding with σ = Õ( 1

ε2 ). Then we improve upon it and give an algorithm with σ = Õ(1
ε ),

which is essentially the best possible, while guaranteeing an error of ε ·OPT(IB) introduced by rounding
(elaborated on in Section 3.2). More precisely, we show the following:

Lemma 1. Given a steam IB of big items, there is a deterministic streaming algorithm that outputs a
HIGH-MULTIPLICITY BIN PACKING instance satisfying (P1)-(P4) with σ = O

(
1
ε · log 1

ε · log OPT(IB)
)

.

Before describing the rounding itself and proving Lemma 1, we explain how to use it to calculate an
accurate estimate of the number of bins.

Calculating a bound on the number of bins after rounding. First, we obtain a solution S of the
rounded instance IR. For instance, we may round the solution of the linear program introduced by
Gilmore and Gomory [22, 23], and get a solution with at most OPT(IR) + σ bins. Or, if item sizes
are rational numbers, we may compute an optimal solution for IR by the algorithm of Goemans and
Rothvoß [24]; however, the former approach appears to be more efficient and more general. In the
following, we thus assume that S uses at most OPT(IR) + σ bins.

We now calculate a bound on the number of bins in the original instance. Let W be the total free
space in the bins of S that can be used for small items. To be precise, W equals the sum over all bins B
in S of max(0, 1− ε− s(B)). Note that the capacity of bins is capped at 1− ε, because it may happen
that all small items are of size ε while the packing leaves space of just under ε in any bin. Then we would
not be able to pack small items into these bins. Reducing the capacity by ε removes this issue. On the
other hand, if a small item does not fit into a bin, then the remaining space in the bin is smaller than ε.

Let s be the total size of all small items in the input stream. If s ≤ W , then all small items surely
fit into the free space of bins in S (and can be assigned there greedily by FIRST FIT). Consequently, we

6



output that the number of bins needed for the stream of items is at most |S|, i.e., the number of bins in
solution S for IR. Otherwise, we need to place small items of total size at most s′ = s −W into new
bins and it is easy to see that opening at most ds′/(1 − ε)e ≤ (1 + O(ε)) · s′ + 1 bins for these small
items suffices. Hence, in the case s > W , we output that |S| + ds′/(1 − ε)e bins are sufficient to pack
all items in the stream.

We prove that the number of bins that we output in either case is a good approximation of the optimal
number of bins, provided that S is a good solution for IR.

Lemma 2. Let I be given as a stream of items. Suppose that 0 < ε ≤ 1
3 , that the rounded instance IR,

created from I , satisfies properties (P1)-(P4), and that the solution S of IR uses at most OPT(IR) + σ
bins. Let ALG(I) be the number of bins that our algorithm outputs. Then, it holds that OPT(I) ≤
ALG(I) ≤ (1 + 3ε) ·OPT(I) + σ +O

(
log 1

ε

)
.

Proof. We analyze the two cases of the algorithm:
Case s ≤ W : In this case, small items fit into the bins of S and ALG(I) = |S|. For the inequality
OPT(I) ≤ ALG(I), observe that the packing S can be used as a packing of items in IB (in a straightfor-
ward way) with no less free space for small items by property (P2). Thus OPT(I) ≤ |S|.

To upper bound ALG(I), note that

|S| ≤ OPT(IR) + σ ≤ (1 + ε) ·OPT(IB) +O
(

log 1
ε

)
+ σ ≤ (1 + ε) ·OPT(I) +O

(
log 1

ε

)
+ σ ,

where the second inequality follows from property (P3) and the third inequality holds as IB is a subin-
stance of I .
Case s > W : Recall that ALG(I) = |S|+ ds′/(1− ε)e. We again have that S can be used as a packing
of IB with no less free space for small items. Thus, the total size of small items that do not fit into bins in
S is at most s′ and these items clearly fit into ds′/(1− ε)e bins. Hence, OPT(I) ≤ |S|+ ds′/(1− ε)e.

For the other inequality, consider starting with solution S for IR, first to (almost) fill up the bins of S
with small items of total size W , then using ds′/(1 − ε)e additional bins for the remaining small items.
Note that in each bin, except the last one, the unused space is less than ε, thus the total size of items in
IR and small items is more than (ALG(I) − 1) · (1 − ε). Finally, we replace items in IR by items in
IB and the total size of items decreases by SIZE(IR) − SIZE(IB) ≤ ε · SIZE(IB) ≤ ε · SIZE(I) by
property (P4). Hence, SIZE(I) ≥ (ALG(I)− 1) · (1− ε)− ε · SIZE(I). Rearranging and using ε ≤ 1

3 ,
we get

ALG(I) ≤ 1 + ε

1− ε · SIZE(I) + 1 ≤ (1 + 3ε) ·OPT(I) + 1 .

Considered together, these two cases both meet the claimed bound.

3.1 Processing the Stream and Rounding

The streaming algorithm of the rounding stage makes use of the deterministic quantile summary of
Greenwald and Khanna [26]. Given a precision δ > 0 and an input stream of numbers s1, . . . , sN ,
their algorithm computes a data structure Q(δ) which is able to answer a quantile query with precision
δN . Namely, for any 0 ≤ φ ≤ 1, it returns an element s of the input stream such that the rank of s is
[(φ− δ)N, (φ+ δ)N ], where the rank of s is the position of s in the non-increasing ordering of the input
stream.3 The data structure stores an ordered sequence of tuples, each consisting of an input number si
and valid lower and upper bounds on the true rank of si in the input sequence.4 The first and last stored
items correspond to the maximum and minimum numbers in the stream, respectively. Note that the lower
and upper bounds on the rank of any stored number differ by at most b2δNc and upper (or lower) bounds
on the rank of two consecutive stored numbers differ by at most b2δNc as well. The space requirement

3Note that if s appears more times in the stream, its rank is an interval rather than a single number. Also, unlike in [26], we
order numbers non-increasingly, which is more convenient for BIN PACKING.

4More precisely, valid lower and upper bounds on the rank of si can be computed easily from the set of tuples.
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Figure 1: An illustration of the original distribution of sizes of big items in IB, depicted by a smooth
curve, and the distribution of item sizes in the rounded instance IR, depicted by a bold “staircase” func-
tion. The distribution of I ′R (which is IR without the b4δNBc biggest items) is depicted a (blue) dash
dotted line. Selected items ai, . . . , aq, with q = 11, are illustrated by (red) dots, and the upper bounds
u1, . . . , uq on the ranks appear on the x axis.

of Q(δ) is O(1
δ · log δN), however, in practice the space used is observed to scale linearly with 1

δ [36].

(Note that an offline optimal data structure for δ-approximate quantiles uses space O
(

1
δ

)
.) We use data

structure Q(δ) to construct our algorithm for processing the stream IB of big items.

3.1.1 Simple Rounding Algorithm

We begin by describing a simpler solution with δ = 1
4ε

2, resulting in a rounded instance with Õ( 1
ε2 ) item

sizes. Subsequently, we introduce a more involved solution with smaller space cost. The algorithm uses
a quantile summary structure to determine the rounding scheme. Given a (big) item si from the input, we
insert it intoQ(δ). After processing all items, we extract fromQ(δ) the set of stored input items (i.e., their
sizes) together with upper bounds on their rank (where the largest size has highest rank 1, and the smallest
size has least rankN ). Note that the numberNB of big items in IB is less than 1

εSIZE(IB) ≤ 1
εOPT(IB)

as each is of size more than ε. Let q be the number of items (or tuples) extracted from Q(δ); we get that
q = O(1

δ · log δNB) = O
( 1
ε2 · log(ε ·OPT(IB))

)
. Let (a1, u1 = 1), (a2, u2), . . . , (aq, uq = NB) be the

output pairs of an item size and the bound on its rank, sorted so that a1 ≥ a2 ≥ · · · ≥ aq. We define the
rounded instance IR with at most q item sizes as follows: IR contains (uj+1 − uj) items of size aj for
each j = 1, . . . , q − 1, plus one item of size aq. See Figure 1 for an illustration.

We show that the desired properties (P1)-(P4) hold with σ = q. Property (P1) follows easily from
the definition of IR and the design of data structure Q(δ). Note that the number of items is preserved.
To show (P2), suppose for a contradiction that the i-th biggest item in IB is bigger than the i-th biggest
item in IR, whose size is aj for j = 1, . . . , q−1, i.e., i ∈ [uj , uj+1) (note that j < q as aq is the smallest
item in IB and is present only once in IR). We get that the rank of item aj in IB is strictly more than i,
and as i ≥ uj , we get a contradiction with the fact that uj is a valid upper bound on the rank of aj in IB.

Next, we give bounds for OPT(IR) and SIZE(IR), which are required by properties (P3) and (P4).
We pack the b4δNBc biggest items in IR separately into “extra” bins. Using the choice of δ = 1

4ε
2 and

NB ≤ 1
εSIZE(IB), we bound the number of these items and thus extra bins by 4δNB ≤ ε · SIZE(IB) ≤

ε · OPT(IB). Let I ′R be the remaining items in IR. We claim that that the i-th biggest item bi in IB is
bigger than the i-th biggest item in I ′R with size equal to aj for j = 1, . . . , q. For a contradiction, suppose
that bi < aj , which implies that the rank rj of aj in IB is less than i. Note that j < q as aq is the smallest
item in IB. Since we packed the b4δNBc biggest items from IR separately, one of the positions of aj in
the ordering of IR is i + b4δNBc and so we have i + b4δNBc < uj+1 ≤ uj + b2δNBc, where the first
inequality holds by the construction of IR and the second inequality is by the design of data structure
Q(δ). It follows that i < uj − b2δNBc. Combining this with rj < i, we obtain that the rank of aj in IB
is less than uj − b2δNBc, which contradicts that uj − b2δNBc is a valid lower bound on the rank of aj .

The claim implies OPT(I ′R) ≤ OPT(IB) and SIZE(I ′R) ≤ SIZE(IB). We thus get that OPT(IR) ≤
OPT(I ′R) + b4δNBc ≤ OPT(IB) + ε · OPT(IB), proving property (P3). Similarly, SIZE(IR) ≤
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SIZE(I ′R) + b4δNBc ≤ SIZE(IB) + ε · SIZE(IB), showing (P4) and concluding the analysis of our
simple rounding algorithm.

3.1.2 Improved Rounding Algorithm

Our improved rounding algorithm reduces the number of sizes in the rounded instance (and also the
memory requirement) from Õ( 1

ε2 ) to Õ(1
ε ). It is based on the observation that the number of items of

sizes close to ε can be approximated with much lower accuracy than the number of items with sizes close
to 1, without affecting the quality of the overall approximation. This was observed already by Karmarkar
and Karp [33].

Proof of Lemma 1. Let k = dlog2
1
εe. We first group big items in k groups 0, . . . , k − 1 by size such

that in group j there are items with sizes in (2−j−1, 2−j ]. That is, the size intervals for groups are
(0.5, 1], (0.25, 0.5], etc. Let Nj , j = 0, . . . , k − 1, be the number of big items in group j; clearly, Nj <
2j+1SIZE(IB) ≤ 2j+1OPT(IB). Note that the total size of items in group j is in (2−j−1 ·Nj , 2−j ·Nj ].
Summing over all groups, we get in particular that

SIZE(IB) >
k∑
j=0

Nj

2j+1 . (1)

For each group j, we use a separate data structure Qj := Q(δ) with δ = 1
8ε, where Q(δ) is the

quantile summary from [26] with precision δ. So when a big item of size si arrives, we find j such that
si ∈ (2−j−1, 2−j ] and insert si intoQj . After processing all items, for each group j, we do the following:
We extract from Qj the set of stored input items (i.e., their sizes) together with upper bounds on their
rank. Let (aj1, u

j
1 = 1), (aj2, u

j
2), . . . , (ajqj , u

j
qj = Nj) be the pairs of an item size and the upper bound on

its rank in group j, ordered as in the simpler algorithm so that aj1 ≥ a
j
2 ≥ · · · ≥ ajqj . We have

qj = O
(1
δ
· log δNj

)
= O

(1
ε
· log

(
ε · 2j+1OPT(IB)

))
= O

(1
ε
· log OPT(IB)

)
,

since ε2j ≤ ε2k ≤ 1.
An auxiliary instance IjR is formed by (uji+1 − u

j
i ) items of size ai for i = 1, . . . , qj − 1 plus one

item of size aqj . To create the rounded instance IR, we take the union of all auxiliary instances IjR,
j = 0, . . . , k − 1. Note that the number of item sizes in IR is

σ ≤
k−1∑
j=0

qj =
k−1∑
j=0
O
(1
ε
· log OPT(IB)

)
= O

(
k

ε
· log OPT(IB)

)
= O

(1
ε
· log 1

ε
· log OPT(IB)

)
.

We show that the desired properties (P1)-(P4) are satisfied. Property (P1) follows easily from the
definition of IR as the union of instances IjR and the design of data structures Qj . To see property (P2),
for every group j, it holds that the i-th biggest item in group j in IR is at least as large as the i-th biggest
item in group j in IB. Indeed, for any p = 0, . . . , qj , ujp is a valid upper bound on the rank of ajp in group
j in IB and ranks of items of size ajp in group j in IR are at least ujp. Moreover, the number of items
is preserved in every group. Hence, overall, the i-th biggest item in IR cannot be smaller than the i-th
biggest item in IB.

Next, we prove properties (P3) and (P4), i.e., the bounds on OPT(IR) and on SIZE(IR). For each
group j, we pack the b4δNjc biggest items in IR with size in group j into “extra” bins, each containing
2j items, except for at most one extra bin which may contain fewer than 2j items. This is possible as any
item in group j has size at most 2−j . Using the choice of δ = 1

8ε and (1), we bound the total number of
extra bins by

k∑
j=0

⌈4δNj

2j
⌉
≤ 4 · 1

8ε ·
k∑
j=0

Nj

2j + k ≤ 1
2ε · 2 · SIZE(IB) + k ≤ ε ·OPT(IB) + k . (2)
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Let I ′R be the remaining items in IR. Consider group j and let IB(j) and I ′R(j) be the items with
sizes in (2−j−1, 2−j ] in IB and in I ′R, respectively. We claim that the i-th biggest item bi in IB(j) is at
least as large as the i-th biggest item in I ′R(j) with size equal to ap for p = 1, . . . , qj . For a contradiction,
suppose that bi < ap, which implies that the rank rp of ap in IB(j) is less than i. Note that p < qj as
aqj is the smallest item in IB(j). Since we packed the largest b4δNjc items from IR(j) separately, we
have i + b4δNjc < up+1 ≤ up + b2δNjc, where the last inequality is by the design of data structure
Qj . It follows that i < up − b2δNjc. Combining it with rp < i, we obtain that the rank of ap in
IB(j) is less than up − b2δNjc, which contradicts that up − b2δNjc is a valid lower bound on the rank
of ap. Hence, the claim holds for any group and it immediately implies OPT(I ′R) ≤ OPT(IB) and
SIZE(I ′R) ≤ SIZE(IB).

Combining with (2), we get that OPT(IR) ≤ OPT(I ′R)+ε ·OPT(IB)+k ≤ (1+ε) ·OPT(IB)+k,
thus (P3) holds. Similarly, to bound the total wasted space, observe that the total size of items of IR that
are not in I ′R is bounded by

k∑
j=0

4δNj

2j ≤ 4 · 1
8ε · 2 ·

k∑
j=0

Nj

2j+1 ≤ ε · SIZE(IB) ,

where we use (1) in the last inequality. We obtain that SIZE(IR) ≤ SIZE(I ′R) + ε · SIZE(IB) ≤
(1 + ε) · SIZE(IB). We conclude that properties (P1)-(P4) hold for the rounded instance IR.

3.2 Bin Packing and Quantile Summaries

In the previous section, the deterministic quantile summary data structure from [26] allows us to obtain
a streaming approximation scheme for BIN PACKING. We argue that this connection runs deeper.

We start with different scenarios for which there exist better quantile summaries. First, if all big item
sizes belong to a universe U ⊂ (ε, 1], then it can be better to use the quantile summary of Shrivastava et
al. [39], which provides a guarantee of O(1

δ · log |U |) on the space complexity, where δ is the precision
requirement. Thus, by using k copies of this quantile summary in the same way as in Section 3.1.2, we
get a streaming 1+ε-approximation algorithm for BIN PACKING that runs in spaceO(1

ε · log 1
ε · log |U |).

Second, if we allow the algorithm to use randomization and fail with probability γ, we can employ
the optimal randomized quantile summary of Karnin, Lang, and Liberty [34], which, for a given precision
δ and failure probability η, uses space O(1

δ · log log 1
η ) and does not provide a δ-approximate quantile

for some quantile query with probability at most η. In particular, using k copies of their data structure
with precision δ = Θ(ε) and failure probability η = γ/k in the same way as in Section 3.1.2 gives a
streaming 1 + ε-approximation algorithm for BIN PACKING which fails with probability at most γ and
runs in space O

(
1
ε · log 1

ε · log log(log 1
ε/γ)

)
.

More intriguingly, the connection between quantile summaries and BIN PACKING also goes in the
other direction. Namely, we show that a streaming 1 + ε-approximation algorithm for BIN PACKING

with space bounded by S(ε,OPT) (or S(ε,N)) implies a data structure of size S(ε,N) for the following
ESTIMATING RANK problem: Create a summary of a stream of N numbers which is able to provide a
δ-approximate rank of any query q, i.e., the number of items in the stream which are larger than q, up
to an additive error of ±δN . Observe that a summary for ESTIMATING RANK is essentially a quantile
summary and we can actually use it to find an approximate quantile by doing a binary search over possible
item names. However, this approach does not guarantee that the item name returned will correspond to
one of the items present in the stream.

The reduction from ESTIMATING RANK to BIN PACKING goes as follows: Suppose that all numbers
in the input stream for ESTIMATING RANK are from interval (1

2 ,
2
3) (this is without loss of generality

by scaling) and let q be a query in (1
2 ,

2
3). For each such ai (in the ESTIMATING RANK instance), we

introduce two items of size ai (in the BIN PACKING instance). In the stream for BIN PACKING, after the
2N items (two copies each of a1, . . . , aN ) are inserted in the same order as in the stream for ESTIMATING

RANK, we then insert a further 2N items, all of size 1 − q. Observe first that no pair of the first 2N
items can be placed in the same bin, so we must open at least 2N bins, two for each of a1, . . . , aN . Since
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1
2 > (1 − q) > 1

3 , and ai > 1
2 , we can place at most one of the 2N items of size (1 − q) in a bin with

ai in it, provided ai + (1− q) ≤ 1, i.e. ai ≤ q. Thus, we can pack a number of the (1− q)-sized items,
equivalent to 2(N − rank(q)), in the first 2N bins. This leaves 2 rank(q) items, all of size (1− q). We
pack these optimally into rank(q) additional bins, for a total of 2N + rank(q) bins.

We claim that a 1 +ε-approximation of the optimum number of bins provides a 4ε-approximate rank
of q. Indeed, let m be the number of bins returned by the algorithm and let r = m− 2N be the estimate
of rank(q). We have that the optimal number of bins equals 2N + rank(q) and thus 2N + rank(q) ≤
m ≤ (1 + ε) · (2N + rank(q)) + o(N). By using r = m− 2N and rearranging, we get

rank(q) ≤ r ≤ rank(q) + ε rank(q) + 2εN + o(N) .

Since the right-hand side can be upper bounded by rank(q) + 4εN (provided that o(N) < εN ), r is a
4ε-approximate rank of q. Hence, the memory state of an algorithm for BIN PACKING after processing
the first 2N items (of sizes a1, . . . , aN ) can be used as a data structure for ESTIMATING RANK.

In [15] we show a space lower bound of Ω(1
ε · log εN) for comparison-based data structures for

ESTIMATING RANK (and for quantile summaries as well).

Theorem 3 (Theorem 13 in [15]). For any 0 < ε < 1
16 , there is no deterministic comparison-based data

structure for ESTIMATING RANK which stores o
(

1
ε · log εN

)
items on any input stream of length N .

We conclude that there is no comparison-based streaming algorithm for BIN PACKING which stores
o(1
ε · log OPT) items on any input stream (recall that N = O(OPT) in our reduction). Note that our

algorithm is comparison-based if we employ the comparison-based quantile summary of Greenwald and
Khanna [26], except that it needs to determine the size group for each item, which can be done by
comparisons with 2−j for integer values of j. Nevertheless, comparisons with a fixed set of constants
does not affect the reduction from ESTIMATING RANK (i.e., the reduction can choose an interval to avoid
all constants fixed in the algorithm), thus the lower bound of Ω

(
1
ε · log εN

)
applies to our algorithm as

well. This yields near optimality of our approach, up to a factor ofO
(
log 1

ε

)
. Finally, we remark that the

lower bound of Ω(1
ε · log log 1

δ ) for randomized comparison-based quantiles summaries [34] translates
to BIN PACKING as well.

3.3 Vector Bin Packing

As already observed by Fernandez de la Vega and Lueker [18], a 1 + ε-approximation algorithm for
(scalar) BIN PACKING implies a d · (1 + ε)-approximation algorithm for VECTOR BIN PACKING, where
items are d-dimensional vectors and bins have capacity d in every dimension. Indeed, we split the
vectors into d groups according to the largest dimension (chosen arbitrarily among dimensions that have
the largest value) and in each group we apply the approximation scheme for BIN PACKING, packing just
according to the largest dimension. Finally, we take the union of opened bins over all groups. Since the
optimum of the BIN PACKING instance for each group is a lower bound on the optimum of VECTOR

BIN PACKING, we get that that the solution is a d · (1 + ε)-approximation.
This can be done in the same way in the streaming model. Hence there is a streaming algorithm for

VECTOR BIN PACKING which outputs a d · (1 + ε)-approximation of OPT, the offline optimal number
of bins, using O

(
d
ε · log 1

ε · log OPT
)

memory. By scaling ε, there is a d + ε-approximation algorithm

with Õ(d2

ε ) memory. We can, however, do better by one factor of d.

Theorem 4. There is a streaming d+ ε-approximation for VECTOR BIN PACKING algorithm that uses
O
(
d
ε · log d

ε · log OPT
)

memory.

Proof. Given an input stream I of vectors, we create an input stream I ′ for BIN PACKING by replacing
each vector v by a single (scalar) item a of size ‖v‖∞. We use our streaming algorithm for BIN PACKING

with precision δ = ε
d which uses O

(
1
δ · log 1

δ · log OPT
)

memory and returns a solution with at most
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B = (1 + δ) · OPT(I ′) + Õ(1
δ ) scalar bins. Clearly, B bins are sufficient for the stream I of vectors,

since in the solution for I ′ we replace each item by the corresponding vector and obtain a valid solution
for I .

Finally, we show that (1+δ) ·OPT(I ′)+Oδ(1) ≤ (d+ε) ·OPT(I)+ Õ(dε ) for which it is sufficient
to prove that OPT(I ′) ≤ d · OPT(I) as δ = ε

d . Namely, from an optimal solution S for I , we create a
solution for I ′ with at most d ·OPT(I) bins. For each bin B in S, we split the vectors assigned to B into
d groups according to the largest dimension (chosen arbitrarily among those with the largest value) and
for each group i we create bin Bi with vectors in group i. Then we just replace each vector v by an item
of size ‖v‖∞ and obtain a valid solution for I ′ with at most d ·OPT(I) bins.

Interestingly, a better than d-approximation using sublinear memory, which is rounding-based, is not
possible, due to the following result in [7]. (Note that the result requires that the numbers in the input
vectors can take arbitrary values in [0, 1], i.e., vectors do not belong to a bounded universe.)

Theorem 5 (Implied by the proof of Theorem 2.2 in [7]). Any algorithm for VECTOR BIN PACKING

that rounds up large coordinates of vectors to o(N/d) types cannot achieve better than d-approximation,
where N is the number of vectors.

It is an interesting open question whether or not we can design a streaming d+ε-approximation with
o(dε ) memory or even with Õ

(
d+ 1

ε

)
memory.

4 Vector Scheduling

4.1 Streaming Algorithm by Combining Small Jobs

We provide a novel approach for creating an input summary for VECTOR SCHEDULING (and hence
also MAKESPAN SCHEDULING by inclusion), based on combining small items into containers, which
works well even in a large dimension. Our streaming algorithm stores all big jobs and all containers,
created from small items, that are relatively big as well. Thus, there is a bounded number of big jobs and
containers, and the space used is bounded as well. We show that this simple summarization preserves
the optimal makespan up to a factor of 2− 1

m + ε for any 0 < ε ≤ 1. Take m ≥ 2, since for m = 1 there
is a trivial streaming algorithm that just sums up the vectors of all jobs to get the optimal makespan. We
assume that the algorithm knows (an upper bound on) m in advance.

Algorithm description. For 0 < ε ≤ 1 and m ≥ 2, the algorithms works as follows: For each
k = 1, . . . , d, it keeps track of the total load of all jobs in dimension k, denoted Lk. Note that the
optimal makespan satisfies OPT ≥ maxk 1

m · Lk. Assume for simplicity that when a new job arrives,
maxk 1

m ·Lk = 1; if not, we rescale every quantity by this maximum. Hence, the optimum makespan for
jobs that arrived so far is at least one, while Lk ≤ m for any k = 1, . . . , d (an alternative lower bound on
OPT is the maximum `∞ norm of a job seen so far, but our algorithm does not use this).

Let γ = Θ
(
ε2/ log d2

ε

)
; the constant hidden in Θ follows from the analysis below. We also ensure

that γ ≤ 1
4ε. We say that a job with vector v is big if ‖v‖∞ > γ; otherwise it is small. The algorithm

stores all big jobs (i.e., the full vector of each big job), while it aggregates small jobs into containers, and
does not store any small job directly. A container is simply a vector c that equals the sum of vectors for
small jobs assigned to this container, and we ensure that ‖c‖∞ ≤ 2γ. Furthermore, container c is closed
if ‖c‖∞ > γ, otherwise, it is open. As two open containers can be combined into one (open or closed)
container, we maintain only one open container. We execute a variant of the NEXT FIT algorithm to pack
the containers, adding the incoming small job into the open container, where it always fits as any small
vector v satisfies ‖v‖∞ ≤ γ. All containers are retained in the memory.

When a new small job arrives or when a big job becomes small, we assign it in the open container.
If this container becomes closed, we open a new, empty one. Moreover, it may happen that a previously
closed container becomes open again. In this case, we combine open containers as long as we have at
least two of them. This completes the description of the algorithm.
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For packing the containers, we may also use another algorithm, such as FIRST FIT, which also packs
small jobs into a closed container if it fits. This may lead to having a lower number of containers in some
cases. However, our upper bound of 2 − 1

m + ε on the approximation factor lost by this summarization
technique holds for any algorithm for packing the containers, as long as they do not exceed the capacity
of containers, equal to 2γ. Moreover, the space bound holds if there is a bounded number of containers
with ‖c‖∞ ≤ γ.

Properties of the input summary. After all jobs are processed, we assume again that maxk 1
m ·Lk = 1,

which implies that OPT ≥ 1. Since any big job and any closed container, each characterized by a vector
v, satisfy ‖v‖∞ > γ, it holds that there are at most 1

γ · d ·m big jobs and closed containers. As at most
one container remains open in the end and any job or container is described by d numbers, the space cost
is O

(
1
γ · d

2 ·m
)

= O
(

1
ε2 · d2 ·m · log d

ε

)
.

We now analyze the maximum approximation factor that can be lost by this summarization. Let IR
be the resulting instance formed by big jobs and containers with small items (i.e., the input summary),
and let I be the original instance, consisting of jobs in the input stream. We show that OPT(IR) and
OPT(I) are close together, up to a factor of 2 − 1

m + ε. Note, however, that we still need to execute an
offline algorithm to get (an approximation of) OPT(IR), which is not an explicit part of the summary.

The crucial part of the proof is to show that containers for small items can be assigned to machines
so that the loads of all machines are nearly balanced in every dimension, especially in the case when
containers constitute a large fraction of the total load of all jobs. To capture this, let LC

k be the total
load of containers in dimension k (equal to the total load of small jobs). Let IC ⊆ IR be the instance
consisting of all containers in IR. The following lemma establishes the approximation factor.

Lemma 6. Supposing that maxk 1
m · Lk = 1, the following holds:

(i) There is a solution for instance IC with load at most max(1
2 ,

1
m ·L

C
k ) + 2ε+ 4γ in each dimension

k on every machine.
(ii) OPT(I) ≤ OPT(IR) ≤

(
2− 1

m + 3ε
)
·OPT(I).

Proof. (i) We obtain the solution from the randomized online algorithm by Im et al. [30]. Although
this algorithm has ratio O(log d/ log log d) on general instances, we show that it behaves substantially
better when jobs are small enough. In a nutshell, this algorithm works by first assigning each job j to
a uniformly random machine i and if the load of machine i exceeds a certain threshold, then the job is
reassigned by GREEDY. The online GREEDY algorithm works by assigning jobs one by one, each to a
machine so that the makespan increases as little as possible (breaking ties arbitrarily).

Let L′k = max(1
2 ,

1
m · L

C
k ). We assume that each machine has its capacity of L′k + 2ε + 4γ in each

dimension k split into two parts: The first part has capacity L′k+ε+2γ in dimension k for the containers
assigned randomly, and the second part has capacity ε+ 2γ in all dimensions for the containers assigned
by GREEDY. Note that GREEDY cares about the load in the second part only.

The algorithm assigns containers one by one as follows: For each container c, it first chooses a
machine i uniformly and independently at random. If the load of the first part of machine i already
exceeds L′k + ε in some dimension k, then c is passed to GREEDY, which assigns it according to the
loads in the second part. Otherwise, the algorithm assigns c to machine i.

As each container c satisfies ‖c‖∞ ≤ 2γ, it holds that randomly assigned containers fit into capacity
L′k + ε + 2γ in any dimension k on any machine. We show that the expected amount of containers
assigned by GREEDY is small enough so that they fit into machines with capacity of ε + 2γ, which in
turn implies that there is a choice of random bits for the assignment so that the capacity for GREEDY is
not exceeded. The existence of a solution with capacity L′k + 2ε+ 4γ in each dimension k will follow.

Consider a container c and let i be the machine chosen randomly for c. We claim that for any
dimension k, the load on machine i in dimension k, assigned before processing c, exceeds L′k + ε with
probability of at most ε

d2 . To show the claim, we use the following Chernoff-Hoeffding bound:

Fact 7. Let X1, . . . , Xn be independent binary random variables and let a1, . . . , an be coefficients in
[0, 1]. LetX =

∑
i aiXi. Then, for any 0 < δ ≤ 1 and any µ ≥ E[X], it holds that Pr[X > (1+δ)·µ] ≤
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exp
(
−1

3 · ε
2 · µ

)
.

We use this bound with variable Xc′ for each vector c′ assigned randomly before vector c and not
reassigned by GREEDY. We have Xc′ = 1 if c′ is assigned on machine i. Let ac′ = 1

2γ · c
′
k ≤ 1. Let

X =
∑

c′ ac′Xc′ be the random variable equal to the load on machine i in dimension k, scaled by 1
2γ .

It holds that E[X] ≤ 1
m ·

1
2γ · L

′
k ·m = 1

2γ · L
′
k, since each container c′ is assigned to machine i with

probability 1
m and L′k ·m is the upper bound on the total load of containers in dimension k. Using the

Chernoff-Hoeffding bound with µ = 1
2γ · L

′
k and δ = ε ≤ 1, we get that

Pr[X > (1 + ε) · 1
2γ · L

′
k] ≤ exp

(
−1

3 · ε
2 · 1

2γ · L
′
k

)
.

Using γ = O
(
ε2/ log d2

ε

)
and L′k ≥

1
2 , we obtain

exp
(
−1

3 · ε
2 · 1

2γ · L
′
k

)
≤ exp

(
−Ω

(
log d

2

ε

))
≤ ε

d2 ,

where the last inequality holds for a suitable choice of the multiplicative constant in the definition of γ.
This is sufficient to show the claim as X > (1 + ε) · 1

2γ · L
′
k if and only if the load on machine i in

dimension k, assigned randomly before c, exceeds (1 + ε) · L′k.
By the union bound, the claim implies that each container c is reassigned by GREEDY with probab-

ility at most εd . Let G be the random variable equal to the sum of the `1 norms (where ‖c‖1 =
∑d
k=1 ck)

of containers assigned by GREEDY. Using the linearity of expectation and the claim, we have

E[G] ≤
∑

c

ε

d
· ‖c‖1 ≤

ε

d
·m · d = ε ·m,

where the second inequality uses that the total load of containers in each dimension is at most m. Let
µG be the makespan of the containers created by GREEDY. Observe that each machine has a dimension
with load at least µG − 2γ. Indeed, otherwise, if there is a machine i with load less than µG − 2γ in all
coordinates, the last container c assigned by GREEDY that caused the increase of the makespan to µG
would be assigned to machine i, and the makespan after assigning c would be smaller than µG (using
‖c‖∞ ≤ 2γ). It follows that µG − 2γ ≤ 1

m ·G and, using E[G] ≤ ε ·m, we get that E[µG] − 2γ ≤ ε.
This concludes the proof that (i) holds.

(ii) The first inequality is straightforward as any solution for IR can be used as a solution for I , just
packing small items first in containers that the algorithm created and then the containers according to the
solution for IR.

To show the upper bound, we create a solution of IR of makespan at most
(
2− 1

m + 3ε
)
· OPT(I)

as follows: We take an optimal solution SB for instance IR \ IC, i.e., for big jobs only, and combine it
with solution SC for containers from (i), to obtain a solution S for IR (interestingly, the machine loads
from SB and SC can be combined in an arbitrary way). Let µk be the largest load assigned to a machine
in dimension k in solution SB; we have µk ≤ OPT(I). Note that LC

k ≤ m − µk, since the total load of
big jobs and containers together is at most m. Consider the load on machine i in dimension k in solution
S. If 1

m · L
C
k ≥

1
2 , then this load is bounded by µk + 1

m · L
C
k + 2ε+ 4γ ≤ µk + 1

m · (m− µk) + 3ε =(
1− 1

m

)
· µk + 1 + 3ε ≤

(
2− 1

m + 3ε
)
· OPT(I), where the first inequality uses LC

k ≤ m − µk and

γ ≤ 1
4ε (ensured by the definition of γ), and the last inequality holds by µk ≤ OPT(I).

Otherwise, 1
m · L

C
k < 1

2 , in which case the load on machine i in dimension k is at most µk + 1
2 +

2ε+ 4γ ≤ (1.5 + 3ε) ·OPT(I) ≤ (2− 1
m + 3ε) ·OPT(I), using similar arguments as in the previous

case and m ≥ 2.

It remains open whether or not the above algorithm with γ = Θ(ε) also gives (2− 1
m + ε)-approxi-

mation, which would imply a better space bound of O(1
ε · d

2 ·m). On the other hand, we now give an
example showing that the approximation guarantee is at least 2− 1

m for this approach.
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Tight example for the algorithm. For any m ≥ 2, we present an instance I in d = m+ 1 dimensions
such that OPT(I) = 1, but OPT(IR) ≥ 2− 1

m , where IR is the instance created by our algorithm.
Let γ be as in the algorithm and assume for simplicity that 1

γ is an integer. First, m big jobs with
vectors v1, . . . ,vm arrive, where vi is a vector with dimensions i and m + 1 equal to 1 and with zeros
in the other dimensions (that is, vi

i = 1 and vi
m+1 = 1, while vi

k = 0 for k /∈ {i,m+ 1}). Then, small
jobs arrive in groups of d− 1 = m jobs and there are (m− 1) · 1

γ groups. Each group consists of items
(γ, 0, . . . , 0, 0), (0, γ, . . . , 0, 0), . . . , (0, 0, . . . , γ, 0), i.e, for each i = 1, . . . , d − 1, it contains one item
with value γ in coordinate i and with zeros in other dimensions. The groups arrive one by one, with
an arbitrary ordering inside the group. Note, however, that these jobs with `∞ norm equal to γ become
small for the algorithm only once the first job from the last group arrives as they are compared to the
total load in each dimension, which increases gradually. When they become small, the algorithm will
combine each group into one container (γ, γ, . . . , γ, 0), which can be achieved by processing the jobs in
their arrival order and by having the last vector of the group larger by an infinitesimal amount (we do
not take these infinitesimals into account in further calculations). Thus, IR consists of m big jobs and
(m− 1) · 1

γ containers (γ, γ, . . . , γ, 0).
Observe that OPT(I) = 1, since in the optimal solution, each machine i is assigned big job vi and

1
γ small jobs with γ in dimension k for each k ∈ {1, . . . , d− 1} \ {i}. Thus the load equals one on any
machine and dimension.

We claim that OPT(IR) ≥ 2 − 1
m . Indeed, only one big job can be assigned on one machine, as all

of them have value one in dimension m + 1, so each machine contains one big job. Observe that some
machine gets at least m−1

m · 1
γ containers and thus, it has load of at least 2 − 1

m in one of the d − 1 first
dimensions, which shows the claim.

Note that for this instance to show ratio 2 − 1
m it suffices that the algorithms creates (m − 1) · 1

γ
containers (γ, γ, . . . , γ, 0). This can be enforced for various greedy algorithms used for packing the
small jobs into containers. We conclude that we need a different approach for input summarization to
get a ratio below 2− 1

m .

4.2 Rounding Algorithms for Constant Dimension

Makespan Scheduling. We start by outlining a simple streaming algorithm for d = 1 based on round-
ing. Here, each job j on input is characterized by its processing time pj only. The algorithm uses the size
of the largest job seen so far, denoted pmax, as a lower bound on the optimum makespan. This makes the
rounding procedure (and hence, the input summary) oblivious of m, the number of machines, which is
in contrast with the algorithm in Section 4 that uses just the sum of job sizes as the lower bound.

The rounding works as follows: Let q be an integer such that pmax ∈ ((1 + ε)q, (1 + ε)q+1], and let
k = dlog1+ε

1
εe = O(1

ε log 1
ε ). A job is big if its size exceeds (1 + ε)q−k; note that any big job is larger

than ε · pmax/(1 + ε)2. All other jobs are small and have size less than ε · pmax. The algorithm maintains
one variable s for the total size of all small jobs and variables Li, i = q− k, . . . , q, for the number of big
jobs with size in ((1 + ε)i, (1 + ε)i+1] (note that this interval is not scaled by pmax, i.e., increasing pmax
slightly does not move the intervals).

Maintaining these variables when a new job arrives can be done in a straightforward way. In par-
ticular, when an increase of pmax causes that q increases (by 1 or more as it is integral), we discard all
variables Li that do not correspond to big jobs any more, and account for previously big jobs that are
now small in variable s. However, as the size of these jobs was rounded to a power of 1 + ε, variable s
can differ from the exact total size of small jobs by a factor of at most 1 + ε.

The created input summary, consisting of O(1
ε log 1

ε ) variables Li and variable s, preserves the op-
timal value up to a factor of 1 +O(ε). This follows, since big jobs are stored with size rounded up to the
nearest power of 1 + ε, and, although we just know the approximate total size of small jobs, they can be
taken into account similarly as when calculating a bound on the number of bins in our algorithm for BIN

PACKING.
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Vector Scheduling. We describe the rounding introduced by Bansal et al. [8], which we can adjust
into a streaming 1 + ε-approximation for VECTOR SCHEDULING in constant dimension. The downside

of this approach is that it requires memory exceeding
(

2
ε

)d
, which becomes unfeasible even for ε = 1

and d being a relatively small constant. Moreover, such an amount of memory may be needed also in the
case of a small number of machines.

We first use the following lemma by Chekuri and Khanna [11], where δ = ε
d :

Lemma 8 (Lemma 2.1 in [11]). Let I be an instance of VECTOR SCHEDULING. Let I ′ be a modified
instance where we replace each vector v by vector v′ as follows: For each 1 ≤ i ≤ d, if vi > δ‖v‖∞,
then v′i = vi; otherwise, v′i = 0. Let S ′ be any solution for I ′. Then, if we replace each vector v′ in S ′
by its counterpart in I , we get a solution of I with makespan at most 1 + ε times the makespan of S ′.

In the following, we assume that the algorithms receives vectors from instance I ′, created as in
Lemma 8. Let pmax be the maximum `∞ norm over all vectors that arrived so far; we use it as a lower
bound on OPT. We again do not use the total volume in each dimension as a lower bound, which
makes the input summarization oblivious of m. A job, characterized by vector v, is said to be big if
‖v‖∞ > δ · pmax; otherwise, v is small.

We round all values in big jobs to the powers of 1 + ε. By Lemma 8, we have that either vk >
δ2 · pmax or vk = 0 for any big v and dimension k, thus there are

⌈
log1+ε

1
δ2

⌉d
= O

((
2
ε log d

ε

)d)
types of big jobs at any time. We have one variable Lt counting the number of jobs for each big type
t, where t is an integer vector consisting of the exponents, i.e., if v is a big vector of type t, then
vi ∈

(
(1 + ε)ti , (1 + ε)ti+1] (we set ti = −∞ if vi = 0). As in the 1-dimensional case, big types

change over time, when pmax (sufficiently) increases.
Note that small jobs cannot be rounded to powers of 1 + ε directly. Instead, they are rounded relative

to their `∞ norms. More precisely, consider a small vector v and let γ = ‖v‖∞. For each dimension k,
if vk > 0, let tk ≥ 0 be the largest integer such that vk ≤ γ · (1 + ε)−ti , and if vi = 0, we set ti to∞.
Then (t1, . . . , td) is the type of small vector v. Observe that small types do not change over time and

there are at most O
((

1
ε log d

ε

)d)
of them. For each small type t, we have one variable st counting the

sum of the `∞ norms of all small jobs of that type.
The variables can be maintained in an online fashion. Namely, when pmax increases, the types for

previously big jobs that are now small are discarded, while the jobs that become small are accounted for
in small types. For each such former big type t, we compute the corresponding small type as follows:
Let δ = ‖t‖∞ be the maximum value in t (which is not −∞). The corresponding small type t̂ has then
t̂i = δ − ti if ti 6= −∞, and t̂i =∞ otherwise. Then we increase st̂ by Lt · (1 + ε)δ+1.

There are two types of errors introduced due to maintaining variables in the streaming scenario and
not offline, where we know the final value of pmax in advance. First, it may happen that a vector v that
was big upon its arrival becomes small, and the small type of v is different than the small type computed
for the former big type of v (i.e., the small type of v with values rounded to powers of 1 + ε). Second,
the sum of `∞ norms of small vectors of a small type t is in

(
st/(1 + ε), st], and moreover, the error

in some dimension i with ti > 0 (i.e., not the largest one for this type) may be of factor up to (1 + ε)2,
since we may round such a dimension two times for some jobs. Note, however, that by giving up a factor
of 1 +O(ε), we may disregard both issues.

The offline algorithm of Bansal et al. [8] implies that such an input summary, consisting of variables
for both small and big types, is sufficient for computing 1 + ε-approximation.
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