Estimates: factorial and binomial coefficients

Proposition. For each natural number n > 1:
2l < pl <™.

Theorem. For each n € N:

n
n? <npl< (n—l—l) .
- = 2
Lemma (AM-GM inequality). For every pair of non-negative reals a, b:

Vab < a;rb.

Theorem. For every n € N:

Claim. For every real number z:
1+x<e”.

Claim (Stirling formula). n! ~ v27mn - (%)", where f ~ g means lim % =1.
n—oo

Theorem. For every 1 < k < n:

Theorem. For every m € N:

2m
2 < 2m < 22m,
2n+1 ~\m /) —

Using Stirling formula, we can get a more precise approximation:

om 22m
m JTm'




Generating functions

Theorem. Let ag, a, as, ... be an infinite sequence of real numbers such that |a;| <
k' for some k € Rand all i > 1. Then for each z € (—k, k) the power series >~ a;2"
. . . . o0 i
is convergent and it determines a real function a(x) = Y .° a;a".

Moreover, the function a(x) is uniquely determined by the sequence on the interval
(—k,k) and a; = a?(0)/i!. We call a(x) the generating function of the sequence
ap,a1,0a2,... .

Example:
sequence 1,1,1,... + power series 1 + x4+ 22 + ... <> generating function ﬁ

Operations with sequences and generating functions:

1. sum: ag + bg, a1 + b1, as + ba, ... + a(z) + b(x)

2. multiplication by a € R: aag, aay, aas, ... < aa(x)

3. substitution of ax for z: ag, aar,a?ay, ... <> a(az)

4. substitution of z™ for z: ag,0,...,0,a1,0,...,0,as,... < a(a™)
5. move right: 0, aq, a1, as,. ..+ za(x)

6. move left: a,a0,as,... <> @

7. differentiation: ay,2as,3as, ... <> o' ()

8. integration: 0,aq, a1, 3as,... < [ a(t) dt
9. product of functions: cg, ¢, ca, ... <> a(x)b(z), where ¢ = Zf:o a;bi_;

10. prefix sums: ag,ag + a1, a9 + a1 + ag, ... < a(z)/(1 — x)

Fibonacci numbers: Let Fy =0,F; =1 and F, 12 = Fj,4+1 + F,,. Then
1
F,=—"

1+v5\" (1-v5\"
V5 2 2
Theorem (Generalized Binomial theorem). For r € R, k € N, we define the gener-
alized binomial coefficients

<2) :r(rfl)(erIz:!...(rkarl)? (8) .

Then (1 + 2)" is the generating function of the sequence (6), (;), (g), ... (the sum
> 2o (5)a' is convergent for z € (—1,1)).




Lemma. For non-negative integers a, b, we have:

(5)= ()

Catalan numbers: Let by =1 and b, = Z?:o b;ib,_;. Then

b, — 1 (2n>
n+1 n

Example: There are exactly b,, binary trees on n vertices.

Theorem (A cookbook for linear recurrent relations). Let
Apir =coAp +c1Apni1+ .o+ k1 Anyr—

be a homogeneous linear recurrence relation with constant coefficients and initial
conditions Ao, ..., Ar_1. Let further

R(z) = aF — 12— =t — cpa®
be its characteristic polynomial and Aq,..., A, € C pairwise different roots of this
polynomial with multiplicities k1,...,k,. Then there are constants Cj; € C such
that for each n:
z k‘ifl n + ]
4= (c( , ))\)
i=1 j=0 J

If R has no multiple roots, the formula for A,, can be written in a simple form:

A, = ZZ:QA;L.
=1

Proof. Only for simple roots. O



Finite projective planes

Definition. Let X be a finite set and £ C 2% a set of subsets of X. Then (X, L)
is called a finite projective plane if it satisfies:

(P0) There exists F' C X with |F| =4 and |[FFN L| <2 for each L € L.
(P1) For all distinct Ly, Ly € L: |L1 N Ly| = 1.

(P2) For all distinct 1,29 € X, there is a unique L € L such that z; € L and
zo € L.

We will call the elements of X points of the projective plane and the elements of £
its lines.
Lemma. For every line L € L, there exists a point € X \ L.

Proposition. Let Ly, Ly € £ be two lines of the finite projective plane (X, £), then
|L1| = |La|.

Definition. The order of a finite projective plane (X, £) is |L| — 1, where L € L.
Theorem. Let (X, L) be a finite projective plane of order n. Then:

(i) Forallz € X we have [{L € L |z € L}|=n+1,
(i) | X|=n?2+n+1,
(iii) |£]=n?+n+1.

Definition. A (finite) set system is a pair (X, L), where X is a finite set and L is
a multi-set of subsets of X. (Formally, you can avoid multi-sets by considering
a sequence of subsets instead. This way, the set system would be a triple (X, I, L),
where I is an index set and L is a mapping from I to 2X.)

The incidence graph of a set system is a bipartite graph with parts X and £ and
edges {z,L} forallz € L € L.

Observation. A set system is uniquely determined by its incidence graph.

Definition. A dual of a set system (X, £) is defined by its incidence graph, which
is obtained by taking the incidence graph of (X, L) and exchaning the roles of its
parts.

Theorem. A dual set system of a finite projective plane is a finite projective plane.
(Roles of points and lines are exchanged by the duality.)

Theorem. If n is a prime power, then there exists a finite projective plane of order n.



Latin squares

Definition. A Latin square of order n is a matrix A of order n x n with entries
from {1,2,...,n} such that a;; # a;; for j # j’ and a;; # ay; for i #i'.

Two Latin squares A, B of order n are called orthogonal if (ai;,bij) = (ars,bys)
implies (4,7) = (r, s).
Proposition. Let Aq, As, ..., A; be a collection of mutually orthogonal Latin squares

of order n. Then t <n — 1.

Theorem. For n > 2, a finite projective plane of order n exists if and only if there
exists a collection of n — 1 mutually orthogonal Latin squares of order n.

Hall’s theorem and bipartite matching

Definition. Let (X, L) be a set system. A function f: £ — X is called its system
of distinct representatives if it is injective and f(S) € S for all S € L.

Theorem (Hall’s theorem, set version). A set system (X, £) has a system of distinct
representatives if and only if || J, | > |K] holds for all sub-systems K C £. (This is
called the Hall’s condition.)

Definition. A matching in a graph G = (V, F) is a set of edges F' C F such that
no two edges in F' share a common vertex. A matching is called perfect if its edges
contain all vertices of G. In a bipartite graph with parts L and R, we can define
L-perfect and R-perfetct matchings similarly.

Observation. Systems of distinct representatives of a set system (X, £) are in one-
to-one correspondence with L-perfect matchings in the incidence graph.

Theorem (Hall’s theorem, graph version). Let G = (V, E) be a bipartite graph
with parts L and R. Then G has a L-perfect matching iff |T'(K)| > |K| for each
K C L, where I'(K) ={v eV |Jwe K :{v,w} € E} is the neighborhood of K.

Corollary. Every regular bipartite graph has a perfect matching.

Definition. A matrix B € R™*™ is bistochastic if all its entries are non-negative and
every row/column sums to 1. In particular, a permutation matriz contains exactly
one 1 in each row/column and zeroes everywhere else.

Observation. Every bistochastic matrix is square.

Theorem (Birkhoff). Every bistochastic matrix is a convex linear combination
of some permutation matrices. That is, for every bistochastic matrix B € R"*"
there exist permutation matrices Py, ..., P, € {0,1}"*™ and positive real numbers
ai,...,op such that B =3 o;P; and ), o; = 1.



Flows in networks

Definition. A network is a directed graph (V, E') with two designated vertices s (the
source) and t (the target) and capacities on edges given by a function ¢ : £ — ]Rg .
Without loss of generality, we can assume that uv € E implies vu € F (missing
edges can be added with zero capacity).

Definition. For a function f : E — R on a network, we define functions f* (inflow),
= (outflow), and f2 (excess) from V to R by:

o)=Y fw), f()= > flow), f2v)=f"w)-f (v).

uveE vweE

Definition. A function f : E — R is a flow in a given network if it satisfies the
following conditions:

1. Capacity constraints: 0 < f(e) < c(e) for all e € E,

2. Flow conservation: f*(v) =0 for all v € V' \ {s,t}
(this is also known as the Kirchhoff’s law).

The value of the flow is defined by |f| = f2 ().
Observation. Equivalently, |f| = —f2(s).

Observation. In every network, there is at least one flow: the everywhere-zero
flow. A more interesting problem is finding a maximum flow, that is a flow with the
maximum possible value. (Does it always exist?)

Definition. For a given network and a flow f, we define residual capacitiesr : E —
R as r(uv) = c(uwv) — f(uv) + f(vu). (Intuitively, it tells how much extra flow we
can send from u to v either by adding to the flow on uwv, or by subtracting from flow
on vu.)

Definition. An augmenting path is a directed path from s to ¢ whose all edges have
non-zero residual capacities.

If there is an augmenting path, the flow can be improved along this path. Repeating
this process yields the following algorithm.
Algorithm (Ford-Fulkerson maximum flow).

1. Let f(e) < 0 for every edge e.
2. While there exists an augmenting path P:

3. € < mineep r(e)

4. For all edges uv € P:

5. § + min(e, c(uv) — f(uv))
6. fluv) < f(uv) +6

7. flou) < flvu) — (e = 9)



Definition. For any two disjoint sets A, B C V, we define E(A,B) ={abe E | a €
A,b € B}. This set of edges is called an (elementary) cutif s € A and t € B.
When E(A, B) is a cut and g is a real-valued function on edges, we define g(A, B) =
> cer(a,p) f(€). In particular, c(A, B) is called the capacity of the cut.

Observation. When f is a flow and E(A, B) is a cut, then |f| = f(A, B)— f(B, A).
Since f(A4, B) < ¢(A, B), this implies |f| < ¢(A, B). Hence if |f| = ¢(4, B), then
f is maximum and E(A, B) minimum (it has the lowest possible capacity over all
cuts).

Theorem. The Ford-Fulkerson algorithm has the following properties:

e During the whole computation, f is a flow.
e When the algorithm stops, f is a maximum flow.

e If the capacities are integers, the algorithm stops. Furthermore, it produces
an integral maximum flow.

e If the capacities are rationals, the algorithm stops.

e For some real capacities, the computation can run forever.

Theorem (Edmonds-Karp algorithm). When the Ford-Fulkerson algorithm always
selects the shortest possible augmenting path, it stops within O(|V|-|E|) iterations.

Corollary. Every network has a maximum flow.

Corollary. If all capacities are integers, there exists at least one maximum flow
using only integers.

Corollary (Ford-Fulkerson min-max theorem). For every network, the value of the
maximum flow equals the capacity of the minimum cut.

Bipartite matchings

For any bipartite graph (LU R, E), we can define an auxiliary network with vertices
LURU {s,t}, edges {su|u e L} U{ww | u € L,v € R,{u,v} € E}U{vt | v € R}
and all capacities set to 1.

Observation. Integral flows in this network correspond to matchings, cuts corre-

spond to vertex covers (sets of vertices which intersect every edge). This implies the
Hall’s theorem. By the min-max theorem, we also get:

Corollary (Koénig’s theorem). In every bipartite graph, the size of a maximum
matching equals the size of a minimum vertex cover.



Higher connectivity

Definition. Let G = (V, E) be an undirected graph. A subset FF C F is an edge
cut of G if G — F' is disconnected. For an integer k, the graph G is called k-edge-
connected, if it has no edge cut of size smaller than k.

Similarly, a vertex cut of G is a subset U C V such that G — U is disconnected. The
graph G is k-vertex-connected, if |V| > k41 and G has no vertex cut of size smaller
than k.

Definition. The edge connectivity function k.(G) is defined as the minimum size
of an edge cut of a graph G (alternatively, the maximum k such that G is k-edge-
connected).

Similarly, the vertex connectivity function k,(G) gives the size of the smallest ver-
tex cut of a non-complete graph G (i.e., the maximum k such that G is k-vertex-
connected). For complete graphs, we define k,(K,) =n — 1.

Lemma. Let G = (V, E) be a graph and e an arbitrary edge of G. Then
ke(G) — 1 < ke(G —e) < ke(G)

and
ky(G) — 1 < ky(G —e) < ky(G).

Theorem (Menger, edge version). Let G be a graph and k a positive integer. Then
G is k-edge-connected if and only if for every pair u,v € V of distinct vertices of G,
there exists a system of k edge-disjoint paths between u and v.

Theorem (Menger, vertex version). Let G be a graph and k a positive integer. Then
G is k-vertex-connected if and only if for every pair u,v € V of distinct vertices of G
there exists a system of k paths between u and v such that every two paths are
vertex-disjoint except for u and v.

Corollary. For every graph G, we have k,(G) < k.(G) < 6(G).

Definition. An ear-decomposition of a graph G = (V, E) is a sequence Gy, G1, . .., Gk
of subgraphs of G satisfying

e (G is a cycle,

e for i = 1,...,k, the graph G; is obtained from G;_; by adding a path P;
sharing exactly its endpoints with the graph G;_; (and no edges).

Theorem. The following properties of a graph G are equivalent:
(i) G is 2-vertex-connected.
(ii) G has an ear-decomposition.

(iii) G can be obtained from K3 by a sequence of edge additions and edge subdivi-
sions.



Counting spanning trees

Definition. Let x(G) denote the number of distinct spanning trees of a graph G.

Proposition (Basic properties of k).

(Cn) =
e x(G) =0 iff G is disconnected.
(&

o K

e x(G)=1Iiff Gis a tree.

o K(GUH)=k(G)-k(H) if G and H are (multi)graphs with exactly one edge
or exactly one vertex in common.

Theorem (Cayley’s formula). x(K,) = n""2 for every n > 2.

Theorem (Deletion-contraction formula). Let G be a multigraph and e its edge.
Then k(G) = k(G — e) + k(G/e), where G/e is multigraph contraction producing
parallel edges, but no loops.

Definition. The Laplace matriz of a graph G = (V, E), V = {v1,..., v, isannxn
matrix with entries:

Qii = deg(”z‘)
S -1 if{’l]i,'l}j}EE
Gij = 0 otherwise

Theorem. For every graph G, x(G) = det @11, where Q;; denotes the matrix
obtained from @ by deleting the i-th row and j-th column.

Extremal combinatorics

Theorem. Maximum number of edges of a graph on n vertices, containing no K3
as a subgraph, is [n?/4]. Furthermore, all graphs achieving the maximum number
of edges are isomorphic to K|, 2/ n/2]-

Theorem. Let G be a graph on n vertices with m edges, containing no Cy as
a subgraph. Then m < 1(n3/% 4 n).



Ramsey theory

Definition. The clique number w(G) of a graph G is the maximum number of
vertices in a complete subgraph. Similarly, the independence number a(G) is the
maximum number of vertices in an independent set (that is, a set inducing a sub-
graph with no edges).

Theorem (Ramsey theorem on graphs). Let k, ¢ € N and let G = (V, E) be a graph
with |V] > (k;i;?). Then G contains a clique of order k or an independent set of
order . (That is, w(G) > k or a(G) > ¢.)

Definition. For a given k,¢ € N, we define the Ramsey number r(k,£) to be the
minimal n such that every graph with at least n vertices contains a clique of order k
or an independent set of order /.

Theorem (Lower bound on Ramsey numbers). 7(k, k) > 2¥/2 for all k > 3.
Definition. [n] will denote the set {1,...,n}.

Theorem (The Pigeonhole principle). Let k and t be positive integers and n >
(k — 1) -t. Then for every function ¢ : [n] — [t], there exists a k-element subset
A C [n] on which the function ¢ is constant. (Intuitively: for every coloring of [n]
by t colors, there is a k-element monochromatic subset.)

Theorem (Ramsey for colored graphs). For all integers k > 0 (required clique size)
and ¢t > 0 (the number of colors), there exists n (minimum graph size) such that for
every function ¢ : ([g]) — [t] (a coloring of edges of K,,) there is A € ([z]) such that

. A
¢ is constant on (2

Theorem (Infinite Pigeonhole principle). For every ¢ : N — [t] (a coloring of natural
numbers by ¢ colors), there exists an infinite set A C N on which ¢ is constant.

) (a monochromatic copy of Kj).

Theorem (Infinite Ramsey theorem). For every c : @I) — [t] (a coloring of an
infinite complete graph by t colors), there exists an infinite set A C N such that c¢ is
constant on (%) (an infinite monochromatic complete subgraph).

Theorem (Infinite Ramsey theorem for p-tuples). For every c¢ : (I;I) — [t] (a coloring
of p-tuples of natural numbers by ¢ colors), there exists an infinite set A C N such
that ¢ is constant on (’2)

Claim (Finite Ramsey theorem for p-tuples). For all integers k > 0 (required subset
size), t > 0 (the number of colors) and p > 0 (tuple size), there exists n (minimum
set size) such that for every function ¢ : ([Z]) — [t] (a coloring of p-tuples of [n] by
t colors), there exists A € ([Z]) such that c is constant on (’2) (a monochromatic
subsystem).

Theorem (Schur). V¢ € N 3n € N Ve : [n] — [t] Jx,y,2z € [n] such that ¢(z) =
c(y) =c(z) and z +y = z.

Theorem (Erdds-Szekeres). For each k € N there exists n € N such that any n-

element set of points in the plane in general position (no three on a line) contains
k points forming a convex k-gon.
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Error-correcting codes

Definition. Let X be a g-element set called the alphabet. Elements of X" are called
words of length n over . A code of length n over ¥ is a subset C' C ¥™. A binary
code is a code over the alphabet {0, 1}. For a code C we define its size as k = log, |C|,
and its rate as o(C) = k/n.

Definition. The Hamming distance of words © = (z1,...,z,) and y = (Ys, ..., Yn)
in X" is defined by d(x,y) = [{i € {1,...,n} | z; # y;}|. The minimal distance of
a code C is d(C) = mind(x,y) over all distinct words z,y € C. A code of length n
and size k with minimal distance d is called a (n, k, d)4-code. If ¢ is clear from the
context, it is usually omitted.

Example:
e The total code X" contains all possible words. It is a (n,n, 1)-code.
e The repetition code {(x1,...,2pn) |21 =... =2, € X} is a (n,1,n)-code.

e The parity code {(x1,...,2pn_1,21+...+x,_1)} over the alphabet Z; is a (n, n—
1,2)-code.

Theorem. A code detects up to e errors iff d > e+ 1. A code corrects up to e errors
iff d>2e+1.

Definition. A code C is linear if its alphabet is some finite field F, and C is
a subspace of the vector space . That is, codewords are closed under addition and
multiplication by an element of F,. Parameters of linear codes are usually written
in brackets: [n, k, d],.

Observation. The dimension of the subspace is equal to the size of the code. A lin-
ear code is completely described by the basis of the subspace, or by the corresponding
generator matriz G, which is a k X n matrix whose rows are the vectors of the basis.
The dual code C* is the orthogonal complement of C. Therefore, it has dimension
n — k. Its generator matrix has size (n — k) x n and it is called the parity check
matriz P of the code C.

Lemma. z € C < PzT = 0.

Observation. Hamming distance in linear codes is invariant with respect to trans-
lation:

de,y) = d(w+ 2y + 2).
Therefore d(C') = mingec w(x), where w(x) = d(0, x) is the Hamming weight of .
Corollary. For a linear code, d is equal to the minimum non-zero number of columns
of the parity-check matrix, which are linearly dependent.

Definition. The family of binary Hamming codes contains for every £ a linear code
with a parity check matrix of shape ¢ x (2¢ — 1), whose columns contain binary
expansions of all numbers 1,...,2¢ — 1.
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Observation. For a given ¢, the corresponding Hamming code is a [2¢ — 1,2 — ¢ —
1, 3]-code.

Theorem (Singleton’s bound). If there exists a (n, k, d)-code, then k <n —d+ 1.

Definition. Let x € {0,1}" and 0 < r < n. A combinatorial ball with center x and
radius r is the set
B(x,r) = {z € {0,1}" | d(x,2) < r}.

Lemma. The volume of the combinatorial ball B(z,r) (in the space of dimension n)

’ V(n,r) = Z (?)

=0

Theorem (Hamming’s bound). Let C be a binary code with minimal distance
d(C) > 2r + 1, then

2”
V(n,r)’
Definition. A binary code C of length n and minimal distance d(C) = 2r + 1 is
called perfect if |C| =2"/V (n,r).

Corollary. All Hamming codes are perfect.

ICl <
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