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1996: 3Dfx Voodoo 1 
◦ First graphical (3D) accelerator for desktop PCs 

1999: NVIDIA GeForce 256 
◦ First Transform&Lightning unit 

2000: NVIDIA GeForce2, ATI Radeon 

2001: GPU has programmable parts 
◦ DirectX – vertex and fragment shaders (v1.0) 

2006: OpenGL, DirectX 10, Windows Vista 
◦ Unified shader architecture in HW 

◦ Geometry shader added 
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2007: NVIDIA CUDA 
◦ First GPGPU solution, restricted to NVIDIA GPUs 

2007: AMD Stream SDK (previously CTM) 

2009: OpenCL, Direct Compute 
◦ Mac OS (Snow Leopard) first to implement OpenCL 

2010: 
◦ OpenCL implementation from AMD and NVIDIA 

◦ OpenCL revision 1.1 

2011: OpenCL 1.2 (current stable) 

2012: NVIDIA Kepler Architecture 

21.3.2013 Martin Kruliš, v 2.2 4 



 CPU 
 

◦ Few cores per chip 

◦ General purpose cores 

◦ Processing different 
threads 

◦ Huge caches to reduce 
memory latency 

 Locality of reference 
problem 
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 GPU 
 

◦ Many cores per chip 

◦ Cores specialized for 
numeric computations 

◦ SIMT thread processing 

◦ Huge amount of threads 
and fast context switch 

 Results in more complex 
memory transfers 



 NVIDIA Fermi 
◦ 16 SMP units 

◦ 512 CUDA cores 

◦ 786kB L2 cache 
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Note that one CUDA core 
corresponds to one 5D AMD 
Stream Processor (VLIW5). 

Therefore Radeon 5870 has 
320 cores with 4-way SIMD 
capabilities and one SFU. 



 Streaming Multiprocessor 
◦ 32 CUDA cores 

◦ 64kB shared memory (or L1 cache) 

◦ 1024 registers per core 

◦ 16 load/store units 

◦ 4 special function units 

◦ 16 double precision ops 
per clock 

◦ 1 instruction decoder 

 All cores are running in lockstep 
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 Single Instruction Multiple Threads 
◦ All cores are executing the same instruction 

◦ Each core has its own set of registers 
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 CPU 
◦ Expensive context-switch 

◦ Large caches required 

 GPU 
◦ Fast context switch 

 Another thread (warp) may run while current 
is stalled 

◦ Small caches 
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 Universal Framework for Parallel Computations 
◦ Specification created by Khronos group 

◦ Multiple implementations exist (AMD, NVIDIA, Mac, …) 

 API for Different Parallel Architectures 
◦ Multi-Core CPU, Many-Core GPU, IBM Cell cards, … 

◦ Handles device detection, data transfers, and code 
execution 

 Extended Version of C99 for Programming Devices 
◦ The code is compiled at runtime for selected device 

◦ Theoretically, we may chose best device for our application 
dynamically 

 However, we have to consider HW-specific optimizations… 
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 Hardware is mapped to the following model... 
◦ Device (CPU die or GPU card) 

◦ Compute unit (CPU core or GPU SMP) 

◦ Processing element (slot in SSE 
registers or GPU core) 
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 Logical Layers 
◦ Platform 

 An implementation of OCL 

◦ Context 

 Groups devices of selected 
kind 

 Buffers, programs, and other 
objects lives in context 

◦ Device 

◦ Command Queue 

 Created for a device 

 One device may have 
multiple command queues 
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Intel Core i7 (4 cores with HT) 
ATI Radeon 5870 (320 cores) 



std::vector<cl::Platform> platforms; 

cl_int err = cl::Platform::get(&platforms); 

if (err != CL_SUCCESS) return 1; 

 

cl_context_properties cps[3] = {CL_CONTEXT_PLATFORM, 
(cl_context_properties)(platforms[0]()), 0}; 

cl::Context context(CL_DEVICE_TYPE_GPU, cps, NULL, NULL, &err); 

 

std::vector<cl::Device> devices = context.getInfo<CL_CONTEXT_DEVICES>(); 

 

cl::Buffer buf(context, CL_MEM_READ_ONLY, sizeof(cl_float)*n); 

 

cl::Program program(context, cl::Program::Sources(1, 
std::make_pair(source.c_str(), source.length())) ); 

err = program.build(devices); 

 

cl::Kernel kernel(program, "function_name", &err); 

err = kernel.setArg(0, buf); 

 

cl::CommandQueue commandQueue(context, devices[0], 0, &err); 

commandQueue.enqueueWriteBuffer(buf, CL_TRUE, 0, sizeof(cl_float)*n, data); 

commandQueue.enqueueNDRangeKernel(kernel, cl::NullRange, cl::NDRange(n), cl::NDRange(grp), 
NULL, NULL); 

commandQueue.finish(); 
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List all platforms 

Context of all GPUs on 
the 1st platform 

List all GPUs 

Create and compile the 
program from string source 

Mark function as a kernel 

GPU command queue 

Send commands and wait for them to finish 



 A Kernel 
◦ Written in OpenCL C (extended version of C99) 

◦ Compiled at runtime for destination platform 

 With high degree of optimization 
 

 Kernel Execution 
◦ Task Parallelism 

 Multiple kernels are enlisted in command queue and 
executed concurrently 

◦ Data Parallelism 

 Multiple instances (threads) are created from single 
kernel, each operate on distinct data 
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 Data Parallelism 
◦ Each kernel instance has its own ID 

 A 1-3 dimensional vector of numbers from 0 to N-1 

◦ ID identifies the portion of data to be processed 

◦ Threads form groups 

 Threads within one group 
can cooperate in some ways 

 Groups have IDs as well 
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𝑇𝐼𝐷 = 𝐺𝐼𝐷𝐺𝑆𝐼𝑍𝐸 + 𝑇𝐿𝑂𝐶𝐴𝐿_𝐼𝐷 



 Types of Memory 
◦ private – memory that belongs to one thread 

◦ local – memory shared by workgroup 

◦ global – memory of 
the device 

◦ constant – read-only 
version of global 
memory 
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 Threads and work groups mapping to hardware 
◦ Workgroup is assigned non-preemptively to SMPs 

◦ Threads are mapped to cores 

 Multiple threads may be mapped to one core 

21.3.2013 Martin Kruliš, v 2.2 17 

core 

core 

core 

core 

core core 

SMP 

T T T T 

Work group 

core 

core 

core 

core 

core core 

SMP 

T T T T T T T T T T T T … 

Remaining workgroups wait until 
running workgroups terminate 



 Data Types 
◦ Almost every standard C99 types (int, float, …) 

◦ Some predefined types: size_t, ptrdiff_t 

◦ Special type half – 16bit equivalent of float 
 

 Vector Data Types 
◦ typeN, where type is std. type and 𝑁 ∈ 2,4,8,16  

 E.g. float4, int16 

◦ Items are accessed as structure members 

 int4 vec = (int4) (1, 2, 3, 4); 

 int x = vec.x; 

◦ Special swizzling operations are allowed 

 int4 vec2 = vec.xxyy;  vec = vec.wzyx; 
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 Functions 
◦ Other functions (beside the kernel) can be defined 

in the program (kernel is just an entry point) 

 Calls are inlined on GPU, since there is no stack 

◦ It is possible to call std. functions like printf() 

 However, it will work only on CPU 

◦ There are many built-in functions 

 Thread-related functions (e.g. get_global_id()) 

 Mathematical and geometric functions 

 Originally designed for graphics 

 Some of them are translated into single instruction 

 Functions for asynchronous memory transfers 
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 Restrictions And Optimization Issues 
◦ Branching problem (if-else) 

 Workgroup runs in SIMT, thus all branches are followed 

 Use conditional assignment rather than branches 

◦ For-cycles 

 The compiler attempts to unwrap them automatically 

◦ While-cycles 

 The same problem as branching 

◦ Vector operations 

 Translated into single instruction if possible (e.g., SSE) 

 The compiler attempts to generate them automatically 

 Different efficiency on different architectures 
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 Global 
◦ Explicit barriers added to the command queue 

◦ Command queue operations event dependencies 
 

 Within Workgroup 
◦ Local barriers 

◦ Memory fences 

◦ Atomic operations (on integers) 

 For both local and global memory 

 Base and extended version 

 Base – common operations (add, sub, xchg, cmpxhg, …) 

 Extended – min, max, and, or, xor 
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__kernel void mul_matrix (__global const float *m1, 

 __global const float *m2, __global float *mRes) 

 { 

  int n = get_global_size(0); 

  int r = get_global_id(0); 

  int c = get_global_id(1); 

  float sum = 0; 

  for (int i = 0; i < n; ++i) 

   sum += m1[r*n + i] * m2[c*n + i]; 

  mRes[r*n + c] = sum; 

 } 
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The second matrix is 
already transposed 



 Multiplication of two rectangular matrices 
◦ AMD Radeon 5870 (320 cores) vs. Core i7 (4 HT cores) 

◦ Naïve 𝑁3 algorithm, second matrix is transposed  
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How many times each thread 
read the global memory 

ALU to reading ops ratio 

How many % of the time took 
memory reading ops 

How many % of the time was 
fetch units stalled (waiting) 

 Profiler Results 



 Coalesced Load 
◦ Threads running in SIMT mode have to cooperate 

◦ Each thread loads different 4-byte word from 
aligned continuous block 

 Details and rules for coalesced loads are different for 
each generation of GPUs 

◦ HW performs such load as one memory transaction 
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 Banking 
◦ Local memory is divided into banks 

◦ Bank manages 4-byte words, addresses are 
assigned modulo number of banks (16 or 32) 

21.3.2013 Martin Kruliš, v 2.2 26 

threads 

banks 

banks 

threads 

Each bank is accessed 
by a single thread 

Broadcast 



 Optimized Solution 
◦ Workgroup computes block of 16x16 results 

◦ In each step, appropriate blocks of 16x16 numbers 
are loaded into local memory and intermediate 
results are updated 
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__kernel void mul_matrix_opt (__global const float *m1, __global const float *m2, __global float *mRes, 

__local float *tmp1, __local float *tmp2) 

{ 

 int size = get_global_size(0); 

 int lsize_x = get_local_size(0); 

 int lsize_y = get_local_size(1); 

 int block_size = lsize_x * lsize_y; 

 int gid_x = get_global_id(0); 

 int gid_y = get_global_id(1); 

 int lid_x = get_local_id(0); 

 int lid_y = get_local_id(1); 

 int offset = lid_y*lsize_x + lid_x; 

  

 float sum = 0; 

 for (int i = 0; i < size; i += lsize_x) { 

     tmp1[offset] = m1[gid_y*size + i + lid_x]; 

     for (int j = 0; j < lsize_x / lsize_y; ++j) 

         tmp2[offset + j*block_size] = m2[(gid_x + lsize_y*j)*size + i + lid_x]; 

     barrier(CLK_LOCAL_MEM_FENCE); 

  

     for (int k = 0; k < lsize_x; ++k) 

         sum += tmp1[lid_y*lsize_x + k] * tmp2[lid_x*lsize_x + k]; 

     barrier(CLK_LOCAL_MEM_FENCE); 

 } 

 mRes[gid_y*size + gid_x] = sum; 

} 
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Copy corresponding 
blocks to local memory 

Compute intermediate 
results from current blocks 



 Optimized version for GPU 
◦ 45x faster to serial CPU, 3.6x to parallel CPU version 
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 Profiler Results 
◦ Fetch has reduced from 2048 to 128 (16x) 

◦ ALU operations took 45% of total time 

◦ Data loads took only 9% and only 5% of time were 
fetch units stalled 

◦ However, there were many bank conflicts 
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 Data Transfers to Computations Ratio 
◦ 1024x1024 matrix (8 MB to GPU, 4 MB from GPU) 

 

 
 

 

 

◦ 2048x2048 matrix (32 MB to GPU, 16 MB from GPU) 
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 Two vectors of 16M floats 
◦ Multiplication: 𝑧𝑖 = 𝑥𝑖 ∗ 𝑦𝑖 

◦ Equation: 𝑧𝑖 = 𝑥𝑖 ∗
𝑦𝑖

𝑥𝑖 + cos 𝑦𝑖 ∗ 𝑥𝑖 
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 Special Version of Knapsack Problem 
◦ Set of (30) numbers, each 

is added into the sum as 
either positive or negative 

◦ Trying to find given sum 

◦ Data modified, so the 
solution does not exist 

 There are only even 
numbers in the set and we 
are looking for odd one 
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 Drivers 
◦ Sometimes unstable, may cause OS crash 

 

 Data 
◦ Needs to be transferred from host memory to GPU 

and back 
 

 Task Parallelism on GPU 
◦ Currently only on NVIDIA Fermi and Kepler 

 

 Kernel Compilation 
◦ Takes up to a few seconds 
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 OpenCL And OpenGL Relations 
◦ OpenCL is a younger brother of OpenGL 

◦ OpenCL has data types for representing images 

 And special types for representing colors 

 Many object conversions are defined 

 CL buffer to GL buffer 

 CL image object to GL texture 

 CL buffer to GL renderbuffer 

◦ OpenCL and OpenGL may share context 

 To create OpenCL objects from OpenGL objects 
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 NVIDIA CUDA 
◦ The first GPGPU technology 

◦ More simple API, designed for GPUs only 

 No platform and device detection required 

◦ Kernels are written directly into the main program 
 

 Microsoft Direct Compute 
◦ Part of DirectX 11 (from November 2009) 

◦ Designed primarily for game developers 

◦ API similar to vertex or fragment shaders 
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 NVIDIA Kepler Architecture (CUDA 5.0) 
◦ Streaming Processors Next Generation (SMX) 

 192 cores, 32 SFUs, 32 load/store units 

 3 cores share a DP unit, 6 cores share LD and SFU 

◦ Dynamic Parallelism 

 Kernel may spawn child kernels (to depth of 24) 

 Implies the work group context-switch capability 

◦ Hyper-Q 

 Up to 32 simultaneous GPU-host connections 

 Better throughput if multiple processes/threads use 
the GPU (concurrent connections are managed in HW) 

21.3.2013 Martin Kruliš, v 2.2 37 



 AMD’s Graphic Core Next (GCN) 
◦ Abandoning the VLIW4 architecture 

 1VLIW x 4 ALU ops => 4 SIMD x 1 ALU op 

◦ 32 compute units (Radeon HD7970) 

◦ 4 SIMD units per CU (each processing 16 elements) 

◦ 10 planned wavefronts per SIMD unit 

◦ Emphasis on vector processing (instructions, 
registers, memory, …) 

◦ OpenCL 1.2, DirectCompute 11.1 and C++ AMP 
compatibility 
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