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 Alternative Frameworks 
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21.3.2013 Martin Kruliš, v 2.2 2 



1996: 3Dfx Voodoo 1 
◦ First graphical (3D) accelerator for desktop PCs 

1999: NVIDIA GeForce 256 
◦ First Transform&Lightning unit 

2000: NVIDIA GeForce2, ATI Radeon 

2001: GPU has programmable parts 
◦ DirectX – vertex and fragment shaders (v1.0) 

2006: OpenGL, DirectX 10, Windows Vista 
◦ Unified shader architecture in HW 

◦ Geometry shader added 
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2007: NVIDIA CUDA 
◦ First GPGPU solution, restricted to NVIDIA GPUs 

2007: AMD Stream SDK (previously CTM) 

2009: OpenCL, Direct Compute 
◦ Mac OS (Snow Leopard) first to implement OpenCL 

2010: 
◦ OpenCL implementation from AMD and NVIDIA 

◦ OpenCL revision 1.1 

2011: OpenCL 1.2 (current stable) 

2012: NVIDIA Kepler Architecture 
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 CPU 
 

◦ Few cores per chip 

◦ General purpose cores 

◦ Processing different 
threads 

◦ Huge caches to reduce 
memory latency 

 Locality of reference 
problem 

21.3.2013 Martin Kruliš, v 2.2 5 

 GPU 
 

◦ Many cores per chip 

◦ Cores specialized for 
numeric computations 

◦ SIMT thread processing 

◦ Huge amount of threads 
and fast context switch 

 Results in more complex 
memory transfers 



 NVIDIA Fermi 
◦ 16 SMP units 

◦ 512 CUDA cores 

◦ 786kB L2 cache 
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Note that one CUDA core 
corresponds to one 5D AMD 
Stream Processor (VLIW5). 

Therefore Radeon 5870 has 
320 cores with 4-way SIMD 
capabilities and one SFU. 



 Streaming Multiprocessor 
◦ 32 CUDA cores 

◦ 64kB shared memory (or L1 cache) 

◦ 1024 registers per core 

◦ 16 load/store units 

◦ 4 special function units 

◦ 16 double precision ops 
per clock 

◦ 1 instruction decoder 

 All cores are running in lockstep 
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 Single Instruction Multiple Threads 
◦ All cores are executing the same instruction 

◦ Each core has its own set of registers 
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registers registers registers registers registers registers 

Instruction Decoder 



 CPU 
◦ Expensive context-switch 

◦ Large caches required 

 GPU 
◦ Fast context switch 

 Another thread (warp) may run while current 
is stalled 

◦ Small caches 
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CPU GPU 



 Universal Framework for Parallel Computations 
◦ Specification created by Khronos group 

◦ Multiple implementations exist (AMD, NVIDIA, Mac, …) 

 API for Different Parallel Architectures 
◦ Multi-Core CPU, Many-Core GPU, IBM Cell cards, … 

◦ Handles device detection, data transfers, and code 
execution 

 Extended Version of C99 for Programming Devices 
◦ The code is compiled at runtime for selected device 

◦ Theoretically, we may chose best device for our application 
dynamically 

 However, we have to consider HW-specific optimizations… 
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 Hardware is mapped to the following model... 
◦ Device (CPU die or GPU card) 

◦ Compute unit (CPU core or GPU SMP) 

◦ Processing element (slot in SSE 
registers or GPU core) 
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 Logical Layers 
◦ Platform 

 An implementation of OCL 

◦ Context 

 Groups devices of selected 
kind 

 Buffers, programs, and other 
objects lives in context 

◦ Device 

◦ Command Queue 

 Created for a device 

 One device may have 
multiple command queues 
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Intel Core i7 (4 cores with HT) 
ATI Radeon 5870 (320 cores) 



std::vector<cl::Platform> platforms; 

cl_int err = cl::Platform::get(&platforms); 

if (err != CL_SUCCESS) return 1; 

 

cl_context_properties cps[3] = {CL_CONTEXT_PLATFORM, 
(cl_context_properties)(platforms[0]()), 0}; 

cl::Context context(CL_DEVICE_TYPE_GPU, cps, NULL, NULL, &err); 

 

std::vector<cl::Device> devices = context.getInfo<CL_CONTEXT_DEVICES>(); 

 

cl::Buffer buf(context, CL_MEM_READ_ONLY, sizeof(cl_float)*n); 

 

cl::Program program(context, cl::Program::Sources(1, 
std::make_pair(source.c_str(), source.length())) ); 

err = program.build(devices); 

 

cl::Kernel kernel(program, "function_name", &err); 

err = kernel.setArg(0, buf); 

 

cl::CommandQueue commandQueue(context, devices[0], 0, &err); 

commandQueue.enqueueWriteBuffer(buf, CL_TRUE, 0, sizeof(cl_float)*n, data); 

commandQueue.enqueueNDRangeKernel(kernel, cl::NullRange, cl::NDRange(n), cl::NDRange(grp), 
NULL, NULL); 

commandQueue.finish(); 
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List all platforms 

Context of all GPUs on 
the 1st platform 

List all GPUs 

Create and compile the 
program from string source 

Mark function as a kernel 

GPU command queue 

Send commands and wait for them to finish 



 A Kernel 
◦ Written in OpenCL C (extended version of C99) 

◦ Compiled at runtime for destination platform 

 With high degree of optimization 
 

 Kernel Execution 
◦ Task Parallelism 

 Multiple kernels are enlisted in command queue and 
executed concurrently 

◦ Data Parallelism 

 Multiple instances (threads) are created from single 
kernel, each operate on distinct data 
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 Data Parallelism 
◦ Each kernel instance has its own ID 

 A 1-3 dimensional vector of numbers from 0 to N-1 

◦ ID identifies the portion of data to be processed 

◦ Threads form groups 

 Threads within one group 
can cooperate in some ways 

 Groups have IDs as well 
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𝑇𝐼𝐷 = 𝐺𝐼𝐷𝐺𝑆𝐼𝑍𝐸 + 𝑇𝐿𝑂𝐶𝐴𝐿_𝐼𝐷 



 Types of Memory 
◦ private – memory that belongs to one thread 

◦ local – memory shared by workgroup 

◦ global – memory of 
the device 

◦ constant – read-only 
version of global 
memory 
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 Threads and work groups mapping to hardware 
◦ Workgroup is assigned non-preemptively to SMPs 

◦ Threads are mapped to cores 

 Multiple threads may be mapped to one core 
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 Data Types 
◦ Almost every standard C99 types (int, float, …) 

◦ Some predefined types: size_t, ptrdiff_t 

◦ Special type half – 16bit equivalent of float 
 

 Vector Data Types 
◦ typeN, where type is std. type and 𝑁 ∈ 2,4,8,16  

 E.g. float4, int16 

◦ Items are accessed as structure members 

 int4 vec = (int4) (1, 2, 3, 4); 

 int x = vec.x; 

◦ Special swizzling operations are allowed 

 int4 vec2 = vec.xxyy;  vec = vec.wzyx; 
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 Functions 
◦ Other functions (beside the kernel) can be defined 

in the program (kernel is just an entry point) 

 Calls are inlined on GPU, since there is no stack 

◦ It is possible to call std. functions like printf() 

 However, it will work only on CPU 

◦ There are many built-in functions 

 Thread-related functions (e.g. get_global_id()) 

 Mathematical and geometric functions 

 Originally designed for graphics 

 Some of them are translated into single instruction 

 Functions for asynchronous memory transfers 
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 Restrictions And Optimization Issues 
◦ Branching problem (if-else) 

 Workgroup runs in SIMT, thus all branches are followed 

 Use conditional assignment rather than branches 

◦ For-cycles 

 The compiler attempts to unwrap them automatically 

◦ While-cycles 

 The same problem as branching 

◦ Vector operations 

 Translated into single instruction if possible (e.g., SSE) 

 The compiler attempts to generate them automatically 

 Different efficiency on different architectures 
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 Global 
◦ Explicit barriers added to the command queue 

◦ Command queue operations event dependencies 
 

 Within Workgroup 
◦ Local barriers 

◦ Memory fences 

◦ Atomic operations (on integers) 

 For both local and global memory 

 Base and extended version 

 Base – common operations (add, sub, xchg, cmpxhg, …) 

 Extended – min, max, and, or, xor 
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__kernel void mul_matrix (__global const float *m1, 

 __global const float *m2, __global float *mRes) 

 { 

  int n = get_global_size(0); 

  int r = get_global_id(0); 

  int c = get_global_id(1); 

  float sum = 0; 

  for (int i = 0; i < n; ++i) 

   sum += m1[r*n + i] * m2[c*n + i]; 

  mRes[r*n + c] = sum; 

 } 
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The second matrix is 
already transposed 



 Multiplication of two rectangular matrices 
◦ AMD Radeon 5870 (320 cores) vs. Core i7 (4 HT cores) 

◦ Naïve 𝑁3 algorithm, second matrix is transposed  
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How many times each thread 
read the global memory 

ALU to reading ops ratio 

How many % of the time took 
memory reading ops 

How many % of the time was 
fetch units stalled (waiting) 

 Profiler Results 



 Coalesced Load 
◦ Threads running in SIMT mode have to cooperate 

◦ Each thread loads different 4-byte word from 
aligned continuous block 

 Details and rules for coalesced loads are different for 
each generation of GPUs 

◦ HW performs such load as one memory transaction 
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 Banking 
◦ Local memory is divided into banks 

◦ Bank manages 4-byte words, addresses are 
assigned modulo number of banks (16 or 32) 
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 Optimized Solution 
◦ Workgroup computes block of 16x16 results 

◦ In each step, appropriate blocks of 16x16 numbers 
are loaded into local memory and intermediate 
results are updated 
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__kernel void mul_matrix_opt (__global const float *m1, __global const float *m2, __global float *mRes, 

__local float *tmp1, __local float *tmp2) 

{ 

 int size = get_global_size(0); 

 int lsize_x = get_local_size(0); 

 int lsize_y = get_local_size(1); 

 int block_size = lsize_x * lsize_y; 

 int gid_x = get_global_id(0); 

 int gid_y = get_global_id(1); 

 int lid_x = get_local_id(0); 

 int lid_y = get_local_id(1); 

 int offset = lid_y*lsize_x + lid_x; 

  

 float sum = 0; 

 for (int i = 0; i < size; i += lsize_x) { 

     tmp1[offset] = m1[gid_y*size + i + lid_x]; 

     for (int j = 0; j < lsize_x / lsize_y; ++j) 

         tmp2[offset + j*block_size] = m2[(gid_x + lsize_y*j)*size + i + lid_x]; 

     barrier(CLK_LOCAL_MEM_FENCE); 

  

     for (int k = 0; k < lsize_x; ++k) 

         sum += tmp1[lid_y*lsize_x + k] * tmp2[lid_x*lsize_x + k]; 

     barrier(CLK_LOCAL_MEM_FENCE); 

 } 

 mRes[gid_y*size + gid_x] = sum; 

} 
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Copy corresponding 
blocks to local memory 

Compute intermediate 
results from current blocks 



 Optimized version for GPU 
◦ 45x faster to serial CPU, 3.6x to parallel CPU version 
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 Profiler Results 
◦ Fetch has reduced from 2048 to 128 (16x) 

◦ ALU operations took 45% of total time 

◦ Data loads took only 9% and only 5% of time were 
fetch units stalled 

◦ However, there were many bank conflicts 
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 Data Transfers to Computations Ratio 
◦ 1024x1024 matrix (8 MB to GPU, 4 MB from GPU) 

 

 
 

 

 

◦ 2048x2048 matrix (32 MB to GPU, 16 MB from GPU) 
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 Two vectors of 16M floats 
◦ Multiplication: 𝑧𝑖 = 𝑥𝑖 ∗ 𝑦𝑖 

◦ Equation: 𝑧𝑖 = 𝑥𝑖 ∗
𝑦𝑖

𝑥𝑖 + cos 𝑦𝑖 ∗ 𝑥𝑖 
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 Special Version of Knapsack Problem 
◦ Set of (30) numbers, each 

is added into the sum as 
either positive or negative 

◦ Trying to find given sum 

◦ Data modified, so the 
solution does not exist 

 There are only even 
numbers in the set and we 
are looking for odd one 
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 Drivers 
◦ Sometimes unstable, may cause OS crash 

 

 Data 
◦ Needs to be transferred from host memory to GPU 

and back 
 

 Task Parallelism on GPU 
◦ Currently only on NVIDIA Fermi and Kepler 

 

 Kernel Compilation 
◦ Takes up to a few seconds 
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 OpenCL And OpenGL Relations 
◦ OpenCL is a younger brother of OpenGL 

◦ OpenCL has data types for representing images 

 And special types for representing colors 

 Many object conversions are defined 

 CL buffer to GL buffer 

 CL image object to GL texture 

 CL buffer to GL renderbuffer 

◦ OpenCL and OpenGL may share context 

 To create OpenCL objects from OpenGL objects 
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 NVIDIA CUDA 
◦ The first GPGPU technology 

◦ More simple API, designed for GPUs only 

 No platform and device detection required 

◦ Kernels are written directly into the main program 
 

 Microsoft Direct Compute 
◦ Part of DirectX 11 (from November 2009) 

◦ Designed primarily for game developers 

◦ API similar to vertex or fragment shaders 
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 NVIDIA Kepler Architecture (CUDA 5.0) 
◦ Streaming Processors Next Generation (SMX) 

 192 cores, 32 SFUs, 32 load/store units 

 3 cores share a DP unit, 6 cores share LD and SFU 

◦ Dynamic Parallelism 

 Kernel may spawn child kernels (to depth of 24) 

 Implies the work group context-switch capability 

◦ Hyper-Q 

 Up to 32 simultaneous GPU-host connections 

 Better throughput if multiple processes/threads use 
the GPU (concurrent connections are managed in HW) 
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 AMD’s Graphic Core Next (GCN) 
◦ Abandoning the VLIW4 architecture 

 1VLIW x 4 ALU ops => 4 SIMD x 1 ALU op 

◦ 32 compute units (Radeon HD7970) 

◦ 4 SIMD units per CU (each processing 16 elements) 

◦ 10 planned wavefronts per SIMD unit 

◦ Emphasis on vector processing (instructions, 
registers, memory, …) 

◦ OpenCL 1.2, DirectCompute 11.1 and C++ AMP 
compatibility 

21.3.2013 Martin Kruliš, v 2.2 38 



21.3.2013 Martin Kruliš, v 2.2 39 


