
Martin Kruliš

21.3.2013 Martin Kruliš, v 2.2 1

 GPGPU History

 Current GPU Architecture

 OpenCL Framework

 Example (and its Optimization)

 Alternative Frameworks

 Most Recent Innovations

21.3.2013 Martin Kruliš, v 2.2 2

1996: 3Dfx Voodoo 1
◦ First graphical (3D) accelerator for desktop PCs

1999: NVIDIA GeForce 256
◦ First Transform&Lightning unit

2000: NVIDIA GeForce2, ATI Radeon

2001: GPU has programmable parts
◦ DirectX – vertex and fragment shaders (v1.0)

2006: OpenGL, DirectX 10, Windows Vista
◦ Unified shader architecture in HW

◦ Geometry shader added

21.3.2013 Martin Kruliš, v 2.2 3

2007: NVIDIA CUDA
◦ First GPGPU solution, restricted to NVIDIA GPUs

2007: AMD Stream SDK (previously CTM)

2009: OpenCL, Direct Compute
◦ Mac OS (Snow Leopard) first to implement OpenCL

2010:
◦ OpenCL implementation from AMD and NVIDIA

◦ OpenCL revision 1.1

2011: OpenCL 1.2 (current stable)

2012: NVIDIA Kepler Architecture

21.3.2013 Martin Kruliš, v 2.2 4

 CPU

◦ Few cores per chip

◦ General purpose cores

◦ Processing different
threads

◦ Huge caches to reduce
memory latency

 Locality of reference
problem

21.3.2013 Martin Kruliš, v 2.2 5

 GPU

◦ Many cores per chip

◦ Cores specialized for
numeric computations

◦ SIMT thread processing

◦ Huge amount of threads
and fast context switch

 Results in more complex
memory transfers

 NVIDIA Fermi
◦ 16 SMP units

◦ 512 CUDA cores

◦ 786kB L2 cache

21.3.2013 Martin Kruliš, v 2.2 6

Note that one CUDA core
corresponds to one 5D AMD
Stream Processor (VLIW5).

Therefore Radeon 5870 has
320 cores with 4-way SIMD
capabilities and one SFU.

 Streaming Multiprocessor
◦ 32 CUDA cores

◦ 64kB shared memory (or L1 cache)

◦ 1024 registers per core

◦ 16 load/store units

◦ 4 special function units

◦ 16 double precision ops
per clock

◦ 1 instruction decoder

 All cores are running in lockstep

21.3.2013 Martin Kruliš, v 2.2 7

 Single Instruction Multiple Threads
◦ All cores are executing the same instruction

◦ Each core has its own set of registers

21.3.2013 Martin Kruliš, v 2.2 8

registers registers registers registers registers registers

Instruction Decoder

 CPU
◦ Expensive context-switch

◦ Large caches required

 GPU
◦ Fast context switch

 Another thread (warp) may run while current
is stalled

◦ Small caches

21.3.2013 Martin Kruliš, v 2.2 9

CPU GPU

 Universal Framework for Parallel Computations
◦ Specification created by Khronos group

◦ Multiple implementations exist (AMD, NVIDIA, Mac, …)

 API for Different Parallel Architectures
◦ Multi-Core CPU, Many-Core GPU, IBM Cell cards, …

◦ Handles device detection, data transfers, and code
execution

 Extended Version of C99 for Programming Devices
◦ The code is compiled at runtime for selected device

◦ Theoretically, we may chose best device for our application
dynamically

 However, we have to consider HW-specific optimizations…

21.3.2013 Martin Kruliš, v 2.2 10

 Hardware is mapped to the following model...
◦ Device (CPU die or GPU card)

◦ Compute unit (CPU core or GPU SMP)

◦ Processing element (slot in SSE
registers or GPU core)

21.3.2013 Martin Kruliš, v 2.2 11

 Logical Layers
◦ Platform

 An implementation of OCL

◦ Context

 Groups devices of selected
kind

 Buffers, programs, and other
objects lives in context

◦ Device

◦ Command Queue

 Created for a device

 One device may have
multiple command queues

21.3.2013 Martin Kruliš, v 2.2 12

Intel Core i7 (4 cores with HT)
ATI Radeon 5870 (320 cores)

std::vector<cl::Platform> platforms;

cl_int err = cl::Platform::get(&platforms);

if (err != CL_SUCCESS) return 1;

cl_context_properties cps[3] = {CL_CONTEXT_PLATFORM,
(cl_context_properties)(platforms[0]()), 0};

cl::Context context(CL_DEVICE_TYPE_GPU, cps, NULL, NULL, &err);

std::vector<cl::Device> devices = context.getInfo<CL_CONTEXT_DEVICES>();

cl::Buffer buf(context, CL_MEM_READ_ONLY, sizeof(cl_float)*n);

cl::Program program(context, cl::Program::Sources(1,
std::make_pair(source.c_str(), source.length())));

err = program.build(devices);

cl::Kernel kernel(program, "function_name", &err);

err = kernel.setArg(0, buf);

cl::CommandQueue commandQueue(context, devices[0], 0, &err);

commandQueue.enqueueWriteBuffer(buf, CL_TRUE, 0, sizeof(cl_float)*n, data);

commandQueue.enqueueNDRangeKernel(kernel, cl::NullRange, cl::NDRange(n), cl::NDRange(grp),
NULL, NULL);

commandQueue.finish();

21.3.2013 Martin Kruliš, v 2.2 13

List all platforms

Context of all GPUs on
the 1st platform

List all GPUs

Create and compile the
program from string source

Mark function as a kernel

GPU command queue

Send commands and wait for them to finish

 A Kernel
◦ Written in OpenCL C (extended version of C99)

◦ Compiled at runtime for destination platform

 With high degree of optimization

 Kernel Execution
◦ Task Parallelism

 Multiple kernels are enlisted in command queue and
executed concurrently

◦ Data Parallelism

 Multiple instances (threads) are created from single
kernel, each operate on distinct data

21.3.2013 Martin Kruliš, v 2.2 14

 Data Parallelism
◦ Each kernel instance has its own ID

 A 1-3 dimensional vector of numbers from 0 to N-1

◦ ID identifies the portion of data to be processed

◦ Threads form groups

 Threads within one group
can cooperate in some ways

 Groups have IDs as well

21.3.2013 Martin Kruliš, v 2.2 15

𝑇𝐼𝐷 = 𝐺𝐼𝐷𝐺𝑆𝐼𝑍𝐸 + 𝑇𝐿𝑂𝐶𝐴𝐿_𝐼𝐷

 Types of Memory
◦ private – memory that belongs to one thread

◦ local – memory shared by workgroup

◦ global – memory of
the device

◦ constant – read-only
version of global
memory

21.3.2013 Martin Kruliš, v 2.2 16

 Threads and work groups mapping to hardware
◦ Workgroup is assigned non-preemptively to SMPs

◦ Threads are mapped to cores

 Multiple threads may be mapped to one core

21.3.2013 Martin Kruliš, v 2.2 17

core

core

core

core

core core

SMP

T T T T

Work group

core

core

core

core

core core

SMP

T T T T T T T T T T T T …

Remaining workgroups wait until
running workgroups terminate

 Data Types
◦ Almost every standard C99 types (int, float, …)

◦ Some predefined types: size_t, ptrdiff_t

◦ Special type half – 16bit equivalent of float

 Vector Data Types
◦ typeN, where type is std. type and 𝑁 ∈ 2,4,8,16

 E.g. float4, int16

◦ Items are accessed as structure members

 int4 vec = (int4) (1, 2, 3, 4);

 int x = vec.x;

◦ Special swizzling operations are allowed

 int4 vec2 = vec.xxyy; vec = vec.wzyx;

21.3.2013 Martin Kruliš, v 2.2 18

 Functions
◦ Other functions (beside the kernel) can be defined

in the program (kernel is just an entry point)

 Calls are inlined on GPU, since there is no stack

◦ It is possible to call std. functions like printf()

 However, it will work only on CPU

◦ There are many built-in functions

 Thread-related functions (e.g. get_global_id())

 Mathematical and geometric functions

 Originally designed for graphics

 Some of them are translated into single instruction

 Functions for asynchronous memory transfers

21.3.2013 Martin Kruliš, v 2.2 19

 Restrictions And Optimization Issues
◦ Branching problem (if-else)

 Workgroup runs in SIMT, thus all branches are followed

 Use conditional assignment rather than branches

◦ For-cycles

 The compiler attempts to unwrap them automatically

◦ While-cycles

 The same problem as branching

◦ Vector operations

 Translated into single instruction if possible (e.g., SSE)

 The compiler attempts to generate them automatically

 Different efficiency on different architectures

21.3.2013 Martin Kruliš, v 2.2 20

 Global
◦ Explicit barriers added to the command queue

◦ Command queue operations event dependencies

 Within Workgroup
◦ Local barriers

◦ Memory fences

◦ Atomic operations (on integers)

 For both local and global memory

 Base and extended version

 Base – common operations (add, sub, xchg, cmpxhg, …)

 Extended – min, max, and, or, xor

21.3.2013 Martin Kruliš, v 2.2 21

__kernel void mul_matrix (__global const float *m1,

 __global const float *m2, __global float *mRes)

 {

 int n = get_global_size(0);

 int r = get_global_id(0);

 int c = get_global_id(1);

 float sum = 0;

 for (int i = 0; i < n; ++i)

 sum += m1[r*n + i] * m2[c*n + i];

 mRes[r*n + c] = sum;

 }

21.3.2013 Martin Kruliš, v 2.2 22

The second matrix is
already transposed

 Multiplication of two rectangular matrices
◦ AMD Radeon 5870 (320 cores) vs. Core i7 (4 HT cores)

◦ Naïve 𝑁3 algorithm, second matrix is transposed

21.3.2013 Martin Kruliš, v 2.2 23

3630

591 319 392

29370

4090

2338
3400

0

5000

10000

15000

20000

25000

30000

35000

CPU - serial CPU - TBB CPU - OpenCL GPU - OpenCL

m
s

1024x1024

2048x2048

?!

21.3.2013 Martin Kruliš, v 2.2 24

How many times each thread
read the global memory

ALU to reading ops ratio

How many % of the time took
memory reading ops

How many % of the time was
fetch units stalled (waiting)

 Profiler Results

 Coalesced Load
◦ Threads running in SIMT mode have to cooperate

◦ Each thread loads different 4-byte word from
aligned continuous block

 Details and rules for coalesced loads are different for
each generation of GPUs

◦ HW performs such load as one memory transaction

21.3.2013 Martin Kruliš, v 2.2 25

0 B 64 B

memory

threads

 Banking
◦ Local memory is divided into banks

◦ Bank manages 4-byte words, addresses are
assigned modulo number of banks (16 or 32)

21.3.2013 Martin Kruliš, v 2.2 26

threads

banks

banks

threads

Each bank is accessed
by a single thread

Broadcast

 Optimized Solution
◦ Workgroup computes block of 16x16 results

◦ In each step, appropriate blocks of 16x16 numbers
are loaded into local memory and intermediate
results are updated

21.3.2013 Martin Kruliš, v 2.2 27

× =

16

16

__kernel void mul_matrix_opt (__global const float *m1, __global const float *m2, __global float *mRes,

__local float *tmp1, __local float *tmp2)

{

 int size = get_global_size(0);

 int lsize_x = get_local_size(0);

 int lsize_y = get_local_size(1);

 int block_size = lsize_x * lsize_y;

 int gid_x = get_global_id(0);

 int gid_y = get_global_id(1);

 int lid_x = get_local_id(0);

 int lid_y = get_local_id(1);

 int offset = lid_y*lsize_x + lid_x;

 float sum = 0;

 for (int i = 0; i < size; i += lsize_x) {

 tmp1[offset] = m1[gid_y*size + i + lid_x];

 for (int j = 0; j < lsize_x / lsize_y; ++j)

 tmp2[offset + j*block_size] = m2[(gid_x + lsize_y*j)*size + i + lid_x];

 barrier(CLK_LOCAL_MEM_FENCE);

 for (int k = 0; k < lsize_x; ++k)

 sum += tmp1[lid_y*lsize_x + k] * tmp2[lid_x*lsize_x + k];

 barrier(CLK_LOCAL_MEM_FENCE);

 }

 mRes[gid_y*size + gid_x] = sum;

}

21.3.2013 Martin Kruliš, v 2.2 28

Copy corresponding
blocks to local memory

Compute intermediate
results from current blocks

 Optimized version for GPU
◦ 45x faster to serial CPU, 3.6x to parallel CPU version

21.3.2013 Martin Kruliš, v 2.2 29

3630

591 319 392 100

29370

4090

2338
3400

654

0

5000

10000

15000

20000

25000

30000

35000

CPU - serial CPU - TBB CPU - OpenCL GPU - OpenCL GPU - opt. OCL

m
s

1024x1024

2048x2048

 Profiler Results
◦ Fetch has reduced from 2048 to 128 (16x)

◦ ALU operations took 45% of total time

◦ Data loads took only 9% and only 5% of time were
fetch units stalled

◦ However, there were many bank conflicts

21.3.2013 Martin Kruliš, v 2.2 30

 Data Transfers to Computations Ratio
◦ 1024x1024 matrix (8 MB to GPU, 4 MB from GPU)

◦ 2048x2048 matrix (32 MB to GPU, 16 MB from GPU)

21.3.2013 Martin Kruliš, v 2.2 31

80

372

20

20

0 50 100 150 200 250 300 350 400 450

optimized

naïve

computations

data transfers

587

3330

67

70

0 500 1000 1500 2000 2500 3000 3500 4000

optimized

naïve

computations

data transfers

 Two vectors of 16M floats
◦ Multiplication: 𝑧𝑖 = 𝑥𝑖 ∗ 𝑦𝑖

◦ Equation: 𝑧𝑖 = 𝑥𝑖 ∗
𝑦𝑖

𝑥𝑖 + cos 𝑦𝑖 ∗ 𝑥𝑖

21.3.2013 Martin Kruliš, v 2.2 32

38
23

148

505

137 148

0

100

200

300

400

500

600

CPU - serial CPU - TBB GPU - OpenCL

multiplication

equation

The computation
took only 2.1 and

5.5 ms, respectively

 Special Version of Knapsack Problem
◦ Set of (30) numbers, each

is added into the sum as
either positive or negative

◦ Trying to find given sum

◦ Data modified, so the
solution does not exist

 There are only even
numbers in the set and we
are looking for odd one

21.3.2013 Martin Kruliš, v 2.2 33

6193

1875

493

0

1000

2000

3000

4000

5000

6000

7000

CPU - serial CPU - TBB GPU - OpenCL

 Drivers
◦ Sometimes unstable, may cause OS crash

 Data
◦ Needs to be transferred from host memory to GPU

and back

 Task Parallelism on GPU
◦ Currently only on NVIDIA Fermi and Kepler

 Kernel Compilation
◦ Takes up to a few seconds

21.3.2013 Martin Kruliš, v 2.2 34

 OpenCL And OpenGL Relations
◦ OpenCL is a younger brother of OpenGL

◦ OpenCL has data types for representing images

 And special types for representing colors

 Many object conversions are defined

 CL buffer to GL buffer

 CL image object to GL texture

 CL buffer to GL renderbuffer

◦ OpenCL and OpenGL may share context

 To create OpenCL objects from OpenGL objects

21.3.2013 Martin Kruliš, v 2.2 35

 NVIDIA CUDA
◦ The first GPGPU technology

◦ More simple API, designed for GPUs only

 No platform and device detection required

◦ Kernels are written directly into the main program

 Microsoft Direct Compute
◦ Part of DirectX 11 (from November 2009)

◦ Designed primarily for game developers

◦ API similar to vertex or fragment shaders

21.3.2013 Martin Kruliš, v 2.2 36

 NVIDIA Kepler Architecture (CUDA 5.0)
◦ Streaming Processors Next Generation (SMX)

 192 cores, 32 SFUs, 32 load/store units

 3 cores share a DP unit, 6 cores share LD and SFU

◦ Dynamic Parallelism

 Kernel may spawn child kernels (to depth of 24)

 Implies the work group context-switch capability

◦ Hyper-Q

 Up to 32 simultaneous GPU-host connections

 Better throughput if multiple processes/threads use
the GPU (concurrent connections are managed in HW)

21.3.2013 Martin Kruliš, v 2.2 37

 AMD’s Graphic Core Next (GCN)
◦ Abandoning the VLIW4 architecture

 1VLIW x 4 ALU ops => 4 SIMD x 1 ALU op

◦ 32 compute units (Radeon HD7970)

◦ 4 SIMD units per CU (each processing 16 elements)

◦ 10 planned wavefronts per SIMD unit

◦ Emphasis on vector processing (instructions,
registers, memory, …)

◦ OpenCL 1.2, DirectCompute 11.1 and C++ AMP
compatibility

21.3.2013 Martin Kruliš, v 2.2 38

21.3.2013 Martin Kruliš, v 2.2 39

