
Martin Kruliš

21.3.2013 Martin Kruliš, v 2.2 1

 GPGPU History

 Current GPU Architecture

 OpenCL Framework

 Example (and its Optimization)

 Alternative Frameworks

 Most Recent Innovations

21.3.2013 Martin Kruliš, v 2.2 2

1996: 3Dfx Voodoo 1
◦ First graphical (3D) accelerator for desktop PCs

1999: NVIDIA GeForce 256
◦ First Transform&Lightning unit

2000: NVIDIA GeForce2, ATI Radeon

2001: GPU has programmable parts
◦ DirectX – vertex and fragment shaders (v1.0)

2006: OpenGL, DirectX 10, Windows Vista
◦ Unified shader architecture in HW

◦ Geometry shader added

21.3.2013 Martin Kruliš, v 2.2 3

2007: NVIDIA CUDA
◦ First GPGPU solution, restricted to NVIDIA GPUs

2007: AMD Stream SDK (previously CTM)

2009: OpenCL, Direct Compute
◦ Mac OS (Snow Leopard) first to implement OpenCL

2010:
◦ OpenCL implementation from AMD and NVIDIA

◦ OpenCL revision 1.1

2011: OpenCL 1.2 (current stable)

2012: NVIDIA Kepler Architecture

21.3.2013 Martin Kruliš, v 2.2 4

 CPU

◦ Few cores per chip

◦ General purpose cores

◦ Processing different
threads

◦ Huge caches to reduce
memory latency

 Locality of reference
problem

21.3.2013 Martin Kruliš, v 2.2 5

 GPU

◦ Many cores per chip

◦ Cores specialized for
numeric computations

◦ SIMT thread processing

◦ Huge amount of threads
and fast context switch

 Results in more complex
memory transfers

 NVIDIA Fermi
◦ 16 SMP units

◦ 512 CUDA cores

◦ 786kB L2 cache

21.3.2013 Martin Kruliš, v 2.2 6

Note that one CUDA core
corresponds to one 5D AMD
Stream Processor (VLIW5).

Therefore Radeon 5870 has
320 cores with 4-way SIMD
capabilities and one SFU.

 Streaming Multiprocessor
◦ 32 CUDA cores

◦ 64kB shared memory (or L1 cache)

◦ 1024 registers per core

◦ 16 load/store units

◦ 4 special function units

◦ 16 double precision ops
per clock

◦ 1 instruction decoder

 All cores are running in lockstep

21.3.2013 Martin Kruliš, v 2.2 7

 Single Instruction Multiple Threads
◦ All cores are executing the same instruction

◦ Each core has its own set of registers

21.3.2013 Martin Kruliš, v 2.2 8

registers registers registers registers registers registers

Instruction Decoder

 CPU
◦ Expensive context-switch

◦ Large caches required

 GPU
◦ Fast context switch

 Another thread (warp) may run while current
is stalled

◦ Small caches

21.3.2013 Martin Kruliš, v 2.2 9

CPU GPU

 Universal Framework for Parallel Computations
◦ Specification created by Khronos group

◦ Multiple implementations exist (AMD, NVIDIA, Mac, …)

 API for Different Parallel Architectures
◦ Multi-Core CPU, Many-Core GPU, IBM Cell cards, …

◦ Handles device detection, data transfers, and code
execution

 Extended Version of C99 for Programming Devices
◦ The code is compiled at runtime for selected device

◦ Theoretically, we may chose best device for our application
dynamically

 However, we have to consider HW-specific optimizations…

21.3.2013 Martin Kruliš, v 2.2 10

 Hardware is mapped to the following model...
◦ Device (CPU die or GPU card)

◦ Compute unit (CPU core or GPU SMP)

◦ Processing element (slot in SSE
registers or GPU core)

21.3.2013 Martin Kruliš, v 2.2 11

 Logical Layers
◦ Platform

 An implementation of OCL

◦ Context

 Groups devices of selected
kind

 Buffers, programs, and other
objects lives in context

◦ Device

◦ Command Queue

 Created for a device

 One device may have
multiple command queues

21.3.2013 Martin Kruliš, v 2.2 12

Intel Core i7 (4 cores with HT)
ATI Radeon 5870 (320 cores)

std::vector<cl::Platform> platforms;

cl_int err = cl::Platform::get(&platforms);

if (err != CL_SUCCESS) return 1;

cl_context_properties cps[3] = {CL_CONTEXT_PLATFORM,
(cl_context_properties)(platforms[0]()), 0};

cl::Context context(CL_DEVICE_TYPE_GPU, cps, NULL, NULL, &err);

std::vector<cl::Device> devices = context.getInfo<CL_CONTEXT_DEVICES>();

cl::Buffer buf(context, CL_MEM_READ_ONLY, sizeof(cl_float)*n);

cl::Program program(context, cl::Program::Sources(1,
std::make_pair(source.c_str(), source.length())));

err = program.build(devices);

cl::Kernel kernel(program, "function_name", &err);

err = kernel.setArg(0, buf);

cl::CommandQueue commandQueue(context, devices[0], 0, &err);

commandQueue.enqueueWriteBuffer(buf, CL_TRUE, 0, sizeof(cl_float)*n, data);

commandQueue.enqueueNDRangeKernel(kernel, cl::NullRange, cl::NDRange(n), cl::NDRange(grp),
NULL, NULL);

commandQueue.finish();

21.3.2013 Martin Kruliš, v 2.2 13

List all platforms

Context of all GPUs on
the 1st platform

List all GPUs

Create and compile the
program from string source

Mark function as a kernel

GPU command queue

Send commands and wait for them to finish

 A Kernel
◦ Written in OpenCL C (extended version of C99)

◦ Compiled at runtime for destination platform

 With high degree of optimization

 Kernel Execution
◦ Task Parallelism

 Multiple kernels are enlisted in command queue and
executed concurrently

◦ Data Parallelism

 Multiple instances (threads) are created from single
kernel, each operate on distinct data

21.3.2013 Martin Kruliš, v 2.2 14

 Data Parallelism
◦ Each kernel instance has its own ID

 A 1-3 dimensional vector of numbers from 0 to N-1

◦ ID identifies the portion of data to be processed

◦ Threads form groups

 Threads within one group
can cooperate in some ways

 Groups have IDs as well

21.3.2013 Martin Kruliš, v 2.2 15

𝑇𝐼𝐷 = 𝐺𝐼𝐷𝐺𝑆𝐼𝑍𝐸 + 𝑇𝐿𝑂𝐶𝐴𝐿_𝐼𝐷

 Types of Memory
◦ private – memory that belongs to one thread

◦ local – memory shared by workgroup

◦ global – memory of
the device

◦ constant – read-only
version of global
memory

21.3.2013 Martin Kruliš, v 2.2 16

 Threads and work groups mapping to hardware
◦ Workgroup is assigned non-preemptively to SMPs

◦ Threads are mapped to cores

 Multiple threads may be mapped to one core

21.3.2013 Martin Kruliš, v 2.2 17

core

core

core

core

core core

SMP

T T T T

Work group

core

core

core

core

core core

SMP

T T T T T T T T T T T T …

Remaining workgroups wait until
running workgroups terminate

 Data Types
◦ Almost every standard C99 types (int, float, …)

◦ Some predefined types: size_t, ptrdiff_t

◦ Special type half – 16bit equivalent of float

 Vector Data Types
◦ typeN, where type is std. type and 𝑁 ∈ 2,4,8,16

 E.g. float4, int16

◦ Items are accessed as structure members

 int4 vec = (int4) (1, 2, 3, 4);

 int x = vec.x;

◦ Special swizzling operations are allowed

 int4 vec2 = vec.xxyy; vec = vec.wzyx;

21.3.2013 Martin Kruliš, v 2.2 18

 Functions
◦ Other functions (beside the kernel) can be defined

in the program (kernel is just an entry point)

 Calls are inlined on GPU, since there is no stack

◦ It is possible to call std. functions like printf()

 However, it will work only on CPU

◦ There are many built-in functions

 Thread-related functions (e.g. get_global_id())

 Mathematical and geometric functions

 Originally designed for graphics

 Some of them are translated into single instruction

 Functions for asynchronous memory transfers

21.3.2013 Martin Kruliš, v 2.2 19

 Restrictions And Optimization Issues
◦ Branching problem (if-else)

 Workgroup runs in SIMT, thus all branches are followed

 Use conditional assignment rather than branches

◦ For-cycles

 The compiler attempts to unwrap them automatically

◦ While-cycles

 The same problem as branching

◦ Vector operations

 Translated into single instruction if possible (e.g., SSE)

 The compiler attempts to generate them automatically

 Different efficiency on different architectures

21.3.2013 Martin Kruliš, v 2.2 20

 Global
◦ Explicit barriers added to the command queue

◦ Command queue operations event dependencies

 Within Workgroup
◦ Local barriers

◦ Memory fences

◦ Atomic operations (on integers)

 For both local and global memory

 Base and extended version

 Base – common operations (add, sub, xchg, cmpxhg, …)

 Extended – min, max, and, or, xor

21.3.2013 Martin Kruliš, v 2.2 21

__kernel void mul_matrix (__global const float *m1,

 __global const float *m2, __global float *mRes)

 {

 int n = get_global_size(0);

 int r = get_global_id(0);

 int c = get_global_id(1);

 float sum = 0;

 for (int i = 0; i < n; ++i)

 sum += m1[r*n + i] * m2[c*n + i];

 mRes[r*n + c] = sum;

 }

21.3.2013 Martin Kruliš, v 2.2 22

The second matrix is
already transposed

 Multiplication of two rectangular matrices
◦ AMD Radeon 5870 (320 cores) vs. Core i7 (4 HT cores)

◦ Naïve 𝑁3 algorithm, second matrix is transposed

21.3.2013 Martin Kruliš, v 2.2 23

3630

591 319 392

29370

4090

2338
3400

0

5000

10000

15000

20000

25000

30000

35000

CPU - serial CPU - TBB CPU - OpenCL GPU - OpenCL

m
s

1024x1024

2048x2048

?!

21.3.2013 Martin Kruliš, v 2.2 24

How many times each thread
read the global memory

ALU to reading ops ratio

How many % of the time took
memory reading ops

How many % of the time was
fetch units stalled (waiting)

 Profiler Results

 Coalesced Load
◦ Threads running in SIMT mode have to cooperate

◦ Each thread loads different 4-byte word from
aligned continuous block

 Details and rules for coalesced loads are different for
each generation of GPUs

◦ HW performs such load as one memory transaction

21.3.2013 Martin Kruliš, v 2.2 25

0 B 64 B

memory

threads

 Banking
◦ Local memory is divided into banks

◦ Bank manages 4-byte words, addresses are
assigned modulo number of banks (16 or 32)

21.3.2013 Martin Kruliš, v 2.2 26

threads

banks

banks

threads

Each bank is accessed
by a single thread

Broadcast

 Optimized Solution
◦ Workgroup computes block of 16x16 results

◦ In each step, appropriate blocks of 16x16 numbers
are loaded into local memory and intermediate
results are updated

21.3.2013 Martin Kruliš, v 2.2 27

× =

16

16

__kernel void mul_matrix_opt (__global const float *m1, __global const float *m2, __global float *mRes,

__local float *tmp1, __local float *tmp2)

{

 int size = get_global_size(0);

 int lsize_x = get_local_size(0);

 int lsize_y = get_local_size(1);

 int block_size = lsize_x * lsize_y;

 int gid_x = get_global_id(0);

 int gid_y = get_global_id(1);

 int lid_x = get_local_id(0);

 int lid_y = get_local_id(1);

 int offset = lid_y*lsize_x + lid_x;

 float sum = 0;

 for (int i = 0; i < size; i += lsize_x) {

 tmp1[offset] = m1[gid_y*size + i + lid_x];

 for (int j = 0; j < lsize_x / lsize_y; ++j)

 tmp2[offset + j*block_size] = m2[(gid_x + lsize_y*j)*size + i + lid_x];

 barrier(CLK_LOCAL_MEM_FENCE);

 for (int k = 0; k < lsize_x; ++k)

 sum += tmp1[lid_y*lsize_x + k] * tmp2[lid_x*lsize_x + k];

 barrier(CLK_LOCAL_MEM_FENCE);

 }

 mRes[gid_y*size + gid_x] = sum;

}

21.3.2013 Martin Kruliš, v 2.2 28

Copy corresponding
blocks to local memory

Compute intermediate
results from current blocks

 Optimized version for GPU
◦ 45x faster to serial CPU, 3.6x to parallel CPU version

21.3.2013 Martin Kruliš, v 2.2 29

3630

591 319 392 100

29370

4090

2338
3400

654

0

5000

10000

15000

20000

25000

30000

35000

CPU - serial CPU - TBB CPU - OpenCL GPU - OpenCL GPU - opt. OCL

m
s

1024x1024

2048x2048

 Profiler Results
◦ Fetch has reduced from 2048 to 128 (16x)

◦ ALU operations took 45% of total time

◦ Data loads took only 9% and only 5% of time were
fetch units stalled

◦ However, there were many bank conflicts

21.3.2013 Martin Kruliš, v 2.2 30

 Data Transfers to Computations Ratio
◦ 1024x1024 matrix (8 MB to GPU, 4 MB from GPU)

◦ 2048x2048 matrix (32 MB to GPU, 16 MB from GPU)

21.3.2013 Martin Kruliš, v 2.2 31

80

372

20

20

0 50 100 150 200 250 300 350 400 450

optimized

naïve

computations

data transfers

587

3330

67

70

0 500 1000 1500 2000 2500 3000 3500 4000

optimized

naïve

computations

data transfers

 Two vectors of 16M floats
◦ Multiplication: 𝑧𝑖 = 𝑥𝑖 ∗ 𝑦𝑖

◦ Equation: 𝑧𝑖 = 𝑥𝑖 ∗
𝑦𝑖

𝑥𝑖 + cos 𝑦𝑖 ∗ 𝑥𝑖

21.3.2013 Martin Kruliš, v 2.2 32

38
23

148

505

137 148

0

100

200

300

400

500

600

CPU - serial CPU - TBB GPU - OpenCL

multiplication

equation

The computation
took only 2.1 and

5.5 ms, respectively

 Special Version of Knapsack Problem
◦ Set of (30) numbers, each

is added into the sum as
either positive or negative

◦ Trying to find given sum

◦ Data modified, so the
solution does not exist

 There are only even
numbers in the set and we
are looking for odd one

21.3.2013 Martin Kruliš, v 2.2 33

6193

1875

493

0

1000

2000

3000

4000

5000

6000

7000

CPU - serial CPU - TBB GPU - OpenCL

 Drivers
◦ Sometimes unstable, may cause OS crash

 Data
◦ Needs to be transferred from host memory to GPU

and back

 Task Parallelism on GPU
◦ Currently only on NVIDIA Fermi and Kepler

 Kernel Compilation
◦ Takes up to a few seconds

21.3.2013 Martin Kruliš, v 2.2 34

 OpenCL And OpenGL Relations
◦ OpenCL is a younger brother of OpenGL

◦ OpenCL has data types for representing images

 And special types for representing colors

 Many object conversions are defined

 CL buffer to GL buffer

 CL image object to GL texture

 CL buffer to GL renderbuffer

◦ OpenCL and OpenGL may share context

 To create OpenCL objects from OpenGL objects

21.3.2013 Martin Kruliš, v 2.2 35

 NVIDIA CUDA
◦ The first GPGPU technology

◦ More simple API, designed for GPUs only

 No platform and device detection required

◦ Kernels are written directly into the main program

 Microsoft Direct Compute
◦ Part of DirectX 11 (from November 2009)

◦ Designed primarily for game developers

◦ API similar to vertex or fragment shaders

21.3.2013 Martin Kruliš, v 2.2 36

 NVIDIA Kepler Architecture (CUDA 5.0)
◦ Streaming Processors Next Generation (SMX)

 192 cores, 32 SFUs, 32 load/store units

 3 cores share a DP unit, 6 cores share LD and SFU

◦ Dynamic Parallelism

 Kernel may spawn child kernels (to depth of 24)

 Implies the work group context-switch capability

◦ Hyper-Q

 Up to 32 simultaneous GPU-host connections

 Better throughput if multiple processes/threads use
the GPU (concurrent connections are managed in HW)

21.3.2013 Martin Kruliš, v 2.2 37

 AMD’s Graphic Core Next (GCN)
◦ Abandoning the VLIW4 architecture

 1VLIW x 4 ALU ops => 4 SIMD x 1 ALU op

◦ 32 compute units (Radeon HD7970)

◦ 4 SIMD units per CU (each processing 16 elements)

◦ 10 planned wavefronts per SIMD unit

◦ Emphasis on vector processing (instructions,
registers, memory, …)

◦ OpenCL 1.2, DirectCompute 11.1 and C++ AMP
compatibility

21.3.2013 Martin Kruliš, v 2.2 38

21.3.2013 Martin Kruliš, v 2.2 39

