General Purpose
Computations on GPU

Martin Krulis

Outline

» GPGPU History

» Current GPU Architecture

» OpenCL Framework

» Example (and its Optimization)
» Alternative Frameworks

» Most Recent Innovations

Martin Krulis, v 2.2 21.3.2013

History

1996: 3Dfx Voodoo 1
> First graphical (3D) accelerator for desktop PCs

1999: NVIDIA GeForce 256

> First Transform&Lightning unit
2000: NVIDIA GeForce2, ATI Radeon
2001: GPU has programmable parts

- DirectX - vertex and fragment shaders (v1.0)

2006: OpenGL, DirectX 10, Windows Vista
- Unified shader architecture in HW
- Geometry shader added

Martin Krulis, v 2.2 21.3.2013

History

2007: NVIDIA CUDA
> First GPGPU solution, restricted to NVIDIA GPUs

2007: AMD Stream SDK (previously CTM)

2009: OpenCL, Direct Compute
> Mac OS (Snow Leopard) first to implement OpenCL

2010:
- OpenCL implementation from AMD and NVIDIA
> OpenCL revision 1.1

2011: OpenCL 1.2 (current stable)
2012: NVIDIA Kepler Architecture

Martin Krulis, v 2.2 21.3.2013

GPU in comparison with CPU

» CPU » GPU

> Few cores per chip > Many cores per chip

- General purpose cores - Cores specialized for

> Processing different numeric computations
threads > SIMT thread processing

> Huge caches to reduce - Huge amount of threads
memory latency and fast context switch
- Locality of reference - Results in more complex

problem memory transfers

Martin Krulis, v 2.2 21.3.2013

Current GPU Hardware

» NVIDIA Fermi

o 16 SMP units
> 512 CUDA cores
o 7I86kB L2 cache

EREEEEE
AmzEg

JEpsin iy
ISR NESE
I

BOEEEEEEH]
noEmEE

@
o
0
L=
[
=
=
=z
@
(=]
I

\
Note that one CUDA core \
corresponds to one 5D AMD
Stream Processor (VLIWS5).
Therefore Radeon 5870 has
320 cores with 4-way SIMD
capabilities and one SFU.

GlgaThead
EEEEHA

[ttt et

ENEEHEEEEEE

I I T Y

Martin Krulis, v 2.2 21.3.2013

Current GPU Hardware

» Streaming Multiprocessor

e T

> 32 CUDA cores

64kB shared memory (or L1 cache)

1024 registers per core

16 load/store units

4 special function units | ¢

16 double precision ops ¢ ¢

per clock -

1 instruction decoder

- All cores are running in lockstep

Martin Krulis, v2.2 21.3.2013

(¢]

(@]

(¢]

(@]

(¢]

(¢]

SIMT Execution

» Single Instruction Multiple Threads
> All cores are executing the same instruction
- Each core has its own set of registers

Instruction Decoder

CUDA Core CUDA Core CUDA Core CUDA Core CUDA Core CUDA Core
Dispasch Port Dispasch Pon Dispasch Port Dispasch Pon Dispasch Pon Dispasch Port
Oparand Coliecior Oparand Coliecter Oparand Cotiector Oparand Cofiecior Oparand Cotiecter Oparand Cotiector
Rowh Qusoe Rewt Quee Rowh Queos Rewt Queoe Rowh Queoe Rowh Qusos

registers registers registers registers registers registers

Martin Krulis, v 2.2 21.3.2013

Dealing With Memory Latency

CPU [GPU multiprocessor
} C P U core (i.e. compute wnirin OpenCL terminology)

- Expensive context-switch
> Large caches required

» GPU

> Fast context switch

- Another thread (warp) may run while current
is stalled

- Small caches

Control ALU | ALU :
ALU | ALU :
== [] []
W T T I T T T T TTTITITIT11]
== ' []
= [1 []

Compurtation Thread

Processed
Waitng for data
Ready to get processed

Martin Krulis, v 2.2 21.3.2013

{15 < O) I I) R R

|

OpenCL "

OpenCL

» Universal Framework for Parallel Computations
- Specification created by Khronos group
> Multiple implementations exist (AMD, NVIDIA, Mag, ...)

» APl for Different Parallel Architectures
> Multi-Core CPU, Many-Core GPU, IBM Cell cards, ...
- Handles device detection, data transfers, and code
execution
» Extended Version of C99 for Programming Devices
- The code is compiled at runtime for selected device

- Theoretically, we may chose best device for our application
dynamically

- However, we have to consider HW-specific optimizations...

Martin Krulis, v 2.2 21.3.2013

10

OpenCL - Haware Model

» Hardware is mapped to the following model...
> Device (CPU die or GPU card)
> Compute unit (CPU core or GPU SMP)

> Processing element (slot in SSE

registers or GPU core) T
il H H
L

Processing

: (OO
Element\ [T

Host

Compute Unit Compute Device

Martin Krulis, v 2.2 21.3.2013 11

OpenCL - Logical Model

-

2 Log I Cal Laye IS BN C\Windows\system32\cmd.exe

Total 2 devices found.
[Device B infol

Platform ee cype 3

. compute units: B

oo S |

O

- An implementation of OCL Giohal nom sice: 1873741624
- Context e A E P et S
. Max. work item siz_esf 1824 168924 1624
- Groups devices of selected Max. work group size: 1024
kind ﬁﬂﬁ‘iéﬁetépﬂfﬁ] N
ax. compute uwnits:
* Buffers, programs, and other gg:,—,i‘il;gﬁ fqﬁg-‘é?gﬁgﬁ
objects lives in context nl—iif‘ aﬁEc;;i:é:_zsaﬂgﬁs
: p . work item simes:
© DEVICe n:i: ::g:'k gr‘uup zize: ggg 256 256
o Command Queue Pressz any key to continue . . . _
- Created for a device
- One device may have - ,

multiple command queues

Intel Core i7 (4 cores with HT)
ATI Radeon 5870 (320 cores)

Martin Krulis,v2.2 21.3.2013 12

OpenCL - Client Application

List all platforms]

std: :vector<cl: :Platform> platforms;
cl int err = cl::Platform: :get(&platforms);
if (err !'= CL_SUCCESS) return 1;

Context of all GPUs on

cl _context properties cps[3] = {CL_CONTEXT PLATFORM, the 1st platform
(cl_context properties) (platforms[0] ()), O};

cl::Context context(CL_DEVICE TYPE GPU, cps, NULL, NULL, &err);

List all GPUs]

std: :vector<cl: :Device> devices = context.getInfo<CL CONTEXT DEVICES>() ; %\

cl: :Buffer buf (context, CL_MEM READ ONLY, sizeof(cl_float) *n); Cresie anc compile the

cl: :Program program(context, cl::Program::Sources(1, program from string source
std: :make pair(source.c_str(), source.length())))

err = program.build(devices) ;
il Mark function as a kernel]
cl: :Kernel kernel (program, "function name", &err);

err = kernel.setArg(0, buf);

GPU command queue
cl: :CommandQueue commandQueue (context, devices[0], 0, &err);

commandQueue.enqueueWriteBuffer (buf, CL _TRUE, 0, sizeof(cl_float)*n, data);

commandQueue . enqueueNDRangeKernel (kernel, cl::NullRange, cl::NDRange(n), cl::NDRange (grp),
NULL, NULL);

d .finish() ; ' ini
commandQueue . £inish () ﬁ Send commands and wait for them to finish ﬂ

Martin Krulis, v 2.2 21.3.2013

13

OpenCL - Kernels

» A Kernel
> Written in OpenCL C (extended version of C99)
- Compiled at runtime for destination platform
- With high degree of optimization

» Kernel Execution

- Task Parallelism

- Multiple kernels are enlisted in command queue and
executed concurrently

- Data Parallelism

- Multiple instances (threads) are created from single
kernel, each operate on distinct data

Martin Krulis, v 2.2 21.3.2013

14

OpenCL - Kernel Execution

» Data Parallelism

- Each kernel instance has its own ID
- A 1-3 dimensional vector of numbers from 0 to N-1

- ID identifies the portion of data to be processed

- Threads form groups

- Threads within one group
can cooperate in some ways

- Groups have IDs as well

TID — GIDGSIZE + TLOCAL_ID

NDRange size G

[
T

NDRange size G,

Pl |
1

WOrk-group size S,

work-group f""’x , WJ,,J

work-item work-item
Wy Sx*'s.r' wjr S‘,',rsfl I [y stx. “",- Sy-ps,/_.'
rsx, syi =40 0) fsx, syi = ,er-L (]
work-item work-item
fwy SX‘SX' wr_ Sy--s‘._,,' fw, SX‘SX' wr_ Sy--s‘._,,'
I'sr.syi=_f-CJ. S},—U " st.sf'=r'Sx-.‘. S’,-l,l
Martin Krulis, v 2.2 21.3.2013

work-group size S!'f

15

OpenCL - Memory Model

» Types of Memory

private - memory that belongs to one thread
local - memory shared by workgroup

(e]

o

(e]

global - memory of
the device

constant - read-only
version of global

memory

Compute Device

Compute unit 7 Compute unit
Private Private Private Private
memory {1 memory ¥ memory 7 memory 7
I L] I L] I I
| PET1 | | PEmM | | PE1 | | PEM |

H

Local Local
memory 7 memory N

h 4

N

‘ GlobalfConstant Memory Data Cache

L A

h 4

‘ Global Memory

‘ Constant Memory

Compute Device Memory

Martin Krulis, v 2.2 21.3.2013

16

How It Really Works (on GPU)

» Threads and work groups mapping to hardware
- Workgroup is assigned non-preemptively to SMPs

- Threads are mapped to cores
- Multiple threads may be mapped to one core

Work group

,_
—
e
y—
-
e
y—
-
e
y—
—
e/
el
-
e
y—
-
e
y—
-
I
y—4
—
e/
,/:::::/
e
-
e
y—
-
I
y—4
—
I
y—4
—
e/
el
-
I
y—4
-
I
y—4
—
I
y—4
—
e/

[(
core | core

(([[
core | core core | core

(([[
core | core core | core

SMP SMP
Martin Krulis, v 2.2 21.3.2013 17

Remaining workgroups wait until
running workgroups terminate

OpenCL - Programming Kernels

» Data Types
- Almost every standard C99 types (int, float, ...)
- Some predefined types: size t, ptrdiff t
- Special type half - 16bit equivalent of £loat

» Vector Data Types

> typeN, where type is std. type and N € {2,4,8,16}
- E.g. float4, intl6
- |tems are accessed as structure members

int4 vec = (int4) (1, 2, 3, 4);
int x = vec.x;

- Special swizzling operations are allowed

intd4d vec2 = vecC.xXXyy;, VeC = VeC.WzZyX;

Martin Krulis, v 2.2 21.3.2013

18

OpenCL - Programming Kernels

» Functions
- Other functions (beside the kernel) can be defined
in the program (kernel is just an entry point)
- Calls are inlined on GPU, since there is no stack
> It is possible to call std. functions like print£ ()
- However, it will work only on CPU
- There are many built-in functions
» Thread-related functions (e.g. get _global id())
- Mathematical and geometric functions
- Originally designed for graphics
- Some of them are translated into single instruction
- Functions for asynchronous memory transfers

Martin Krulis, v 2.2 21.3.2013

19

OpenCL - Programming Kernels

» Restrictions And Optimization Issues

- Branching problem (if-else)
- Workgroup runs in SIMT, thus all branches are followed
- Use conditional assignment rather than branches
> For-cycles
- The compiler attempts to unwrap them automatically
- While-cycles
- The same problem as branching
> Vector operations
- Translated into single instruction if possible (e.g., SSE)
- The compiler attempts to generate them automatically
- Different efficiency on different architectures

Martin Krulis, v 2.2 21.3.2013

20

OpenCL - Synchronization

» Global

- Explicit barriers added to the command queue
- Command queue operations event dependencies

» Within Workgroup
> Local barriers
- Memory fences
- Atomic operations (on integers)

* For both local and global memory
- Base and extended version

- Base - common operations (add, sub, xchg, cmpxhg, ...

- Extended - min, max, and, or, xor

Martin Krulis, v 2.2 21.3.2013

21

Example - Matrix Multiplication

___kernel void mul matrix (global const float *ml,
__global const float *m2, global float *mRes)

{

int n = get global size(0);
int r = get global id(0);
get global id(1l);
float sum = 0O;

for (int 1 = 0; 1 < n; ++1i)

sum += ml[r*n + i] * m2[c*n + i];

int c

mRes[r*n + c] = sum;

The second matrix is
already transposed

Martin Krulis, v 2.2 21.3.2013 22

Matrix Multiplication - Results

» Multiplication of two rectangular matrices
- AMD Radeon 5870 (320 cores) vs. Core i7 (4 HT cores)
- Naive N3 algorithm, second matrix is transposed

35000

30000 29370

25000

20000

m 1024x1024 g
m 2048x2048 15000

10000

5000 3630 4090 3400

591 319 392 .
o | B

CPU - serial CPU - TBB CPU - OpenCL GPU - OpenCL

Martin Krulis, v 2.2 21.3.2013

23

Looking for the cause...

How many times each thread

4 PI’Ofi |er Resu ItS read the global memory

Method ExecutionOrder GlobalWorkSize GroupWorkSize KernelTime LocalMern MemTransferbize ALU\\ Fetch/Write
BufHostTeDevice |1 4194304 \ /
BufHostToDevice 2 4194304 \/
mmm 3 {1024:1024; 1} f16:16;1} 37205272 0 5133|2048 1
BufDeviceToHost |4 4194304

)
How many % of the time took
memory reading ops
J

/

Wavefront ALUBusy AlLUFetchRatio ALUPackipg FefichUnitBusy FetchUnitStalled WriteUnitStalled ALUStalledBylLDS LDSBankConflict

\ /
N

16354 6,34 2,'5:\1 35,99 94 37 83,.15k] 0 0
\ \
ﬂ ALU to reading ops ratio] How many % of the time was

fetch units stalled (waiting)

Martin Krulis, v 2.2 21.3.2013 24

Global Memory Transactions

» Coalesced Load

> Threads running in SIMT mode have to cooperate

- Each thread loads different 4-byte word from
aligned continuous block

- Details and rules for coalesced loads are different for
each generation of GPUs

- HW performs such load as one memory transaction

OB 64 B

memory

threads

Martin Krulis, v 2.2 21.3.2013 25

Local Memory Model

» Banking
- Local memory is divided into banks

- Bank manages 4-byte words, addresses are
assigned modulo number of banks (16 or 32)

banks

threads

banks

threads

/X

N

>

XL

Each bank is accessed
by a single thread

Broadcast

Martin Krulis, v 2.2 21.3.2013

26

Optimized Example

» Optimized Solution
- Workgroup computes block of 16x16 results

> In each step, appropriate blocks of 16x16 numbers
are loaded into local memory and intermediate
results are updated

AR - s
-------------------- X o S e R

Martin Krulis, v 2.2 21.3.2013

27

Optimized Example

__kernel void mul _matrix opt (__global const float *ml, _ global const float *m2, _ global float *mRes,
__local float *tmpl, _ local float *tmp2)

int size = get_global_size(0);

int lsize x = get local_size(0)
int lsize y = get local size(1l);
int block_size = lsize x * lsize_ y;
int gid_x = get_global_id(0);

int gid y = get_global id(1);

int lid x = get_local_id(0);

int lid y = get_local_id(1);

Copy corresponding
blocks to local memory

int offset = lid y*lsize x + 1lid x;

float sum = 0;

for (int i = 0; i < size; i += lsize_x) {
tmpl[offset] = ml[gid y*size + i + 1id x];
for (int j = 0; j < lsize x / lsize y; ++3)
tmp2 [offset + j*block_size] = m2[(gid _x + lsize y*j)*size + i + 1lid x];
barrier (CLK_LOCAL MEM FENCE) ;

for (int k = 0; k < lsize x; ++k)
sum += tmpl[lid y*lsize x + k] * tmp2[lid x*lsize x + k];
barrier (CLK_LOCAL MEM FENCE) ;

}

mRes [gid_y*size + gid x] = sum;

Compute intermediate
results from current blocks

Martin Krulis, v 2.2 21.3.2013

Optimized Example Results

» Optimized version for GPU
- 45x faster to serial CPU, 3.6x to parallel CPU version

35000

30000 29370

25000

20000

m1024x1024 é’
m 2048x2048 15000

10000

5000 -

392 . 100 654
. 1

CPU - TBB CPU - OpenCL GPU - OpenCL GPU - opt. OCL

CPU - serial

Martin Krulis, v 2.2 21.3.2013 29

Optimized Example Results

» Profiler Results
- Fetch has reduced from 2048 to 128 (16x)
- ALU operations took 45% of total time

- Data loads took only 9% and only 5% of time were
fetch units stalled

- However, there were many bank conflicts

ALU Fetch ALUBusy AlLUFetchRatic ALUPacking FetchUnitBusy FetchUnitStalled WriteUnitStalled ALUStalledByLDS LDSBankConflict

7328 (128 45,87 57.25 3216 8,28 571 0 100 100

Martin Krulis, v 2.2 21.3.2013 30

Data Transfers

» Data Transfers to Computations Ratio
> 1024x1024 matrix (8 MB to GPU, 4 MB from GPU)

naive
HE computations

optimized H data transfers

0 50 100 150 200 250 300 350 400 450

o 2048x2048 matrix (32 MB to GPU, 16 MB from GPU)

naive

l computations

optimized

@ data transfers

1000 1500 2000 2500 3000 3500 4000

Martin Krulis, v 2.2 21.3.2013

31

Other Examples - Vector Ops

» Two vectors of 16M floats
> Multiplication: z; = x; x y;
o Equation: z; = \/x; * V/x, + cos y; * x;

600

500

400

300

200

100

505

E multiplication

H equation

The computation
, took only 2.1 and

CPU - serial CPU - TBB GPU - Ope)
5.5 ms, respectively

Martin Krulis, v 2.2 21.3.2013 32

Other Examples - Backtracking

» Special Version of Knapsack Problem

- Set of (30) numbers, each 70
is added into the sum as
either positive or negative

> Trying to find given sum
- Data modified, so the 4000
solution does not exist

- There are only even
numbers in the set and we 2000

are looking for odd one I
1000 293

CPU - serial CPU - TBB GPU - OpenCL

6193
6000

5000

3000

1875

0

Martin Krulis, v 2.2 21.3.2013 33

Caveats And Pit-holes

» Drivers
- Sometimes unstable, may cause OS crash

» Data

- Needs to be transferred from host memory to GPU
and back

» Task Parallelism on GPU
> Currently only on NVIDIA Fermi and Kepler

» Kernel Compilation
- Takes up to a few seconds

Martin Krulis, v 2.2 21.3.2013

34

OpenCL And OpenGL

» OpenCL And OpenGL Relations

- OpenCL is a younger brother of OpenGL
- OpenCL has data types for representing images
- And special types for representing colors
- Many object conversions are defined
- CL buffer to GL buffer

- CL image object to GL texture
- CL buffer to GL renderbuffer

- OpenCL and OpenGL may share context
- To create OpenCL objects from OpenGL objects

Martin Krulis, v 2.2 21.3.2013 35

Alternative Technologies

» NVIDIA CUDA

> The first GPGPU technology
- More simple API, designed for GPUs only
- No platform and device detection required
- Kernels are written directly into the main program

» Microsoft Direct Compute
o Part of DirectX 11 (from November 2009)
- Designed primarily for game developers
- APl similar to vertex or fragment shaders

Martin Krulis, v 2.2 21.3.2013

36

What’s Up

» NVIDIA Kepler Architecture (CUDA 5.0)

> Streaming Processors Next Generation (SMX)

- 192 cores, 32 SFUs, 32 load/store units

- 3 cores share a DP unit, 6 cores share LD and SFU
> Dynamic Parallelism

- Kernel may spawn child kernels (to depth of 24)

- Implies the work group context-switch capability
> Hyper-Q

- Up to 32 simultaneous GPU-host connections

- Better throughput if multiple processes/threads use
the GPU (concurrent connections are managed in HW)

Martin Krulis, v 2.2 21.3.2013

37

What’s Up

» AMD’s Graphic Core Next (GCN)
- Abandoning the VLIW4 architecture
- 1VLIW x 4 ALU ops => 4 SIMD x 1T ALU op
32 compute units (Radeon HD7970)
4 SIMD units per CU (each processing 16 elements)
10 planned wavefronts per SIMD unit

Emphasis on vector processing (instructions,
registers, memory, ...)

OpenCL 1.2, DirectCompute 11.1 and C++ AMP
compatibility

O

(0]

O

(0]

(@)

Martin Krulis, v 2.2 21.3.2013

38

Discussion

Martin Krulis, v 2.2

21.3.2013

39

