Bounds on existence of odd and unique expanders

Filip Hlásek

Computer Science Institute of Charles University
Faculty of Mathematics and Physics
Charles University in Prague

June 20, 2016

What is an expander?

Definition

We call a d-regular graph with n vertices a $(\boldsymbol{n}, \boldsymbol{d}, \boldsymbol{\alpha}, \boldsymbol{\epsilon})$-expander if every subset S of at most $\alpha \cdot n$ of its vertices has at least $\epsilon \cdot|S|$ neighbors.

Example: (40, 4, 0.5, 0.3)-expander

Odd and unique neighbors

Definition

Odd neighbor is attached by an odd number of edges to S.

Definition

Unique neighbor is attached by a single edge to the set S.

unique neighbor \rightarrow odd neighbor \rightarrow neighbor

Trade-off between α and ϵ

"... if every subset S of at most $\alpha \cdot n$ of its vertices has at least $\epsilon \cdot|S|$ neighbors."

- The expansion property ϵ is more strictly restricted if the argument α is increased. What is the general trade-off between these values?
- Is it possible to construct expander graphs with positive expansion ϵ for every $0<\alpha<1$, or is there any fundamental restriction?

Main results

Unique neighbor expanders

Theorem 10 (A small subset of vertices without unique neighbors)

Let $G=(V, E)$ be a graph. There exists a nonempty subset of its vertices $S \subseteq V$ such that $|S| \leq \frac{|V|}{2}+1$, which does not have any unique neighbors.

Figure: An example of a small set of vertices (red colored), to which all of its neighbors (green colored) are connected at least twice.

Main results

Unique neighbor expanders

Theorem 10 (A small subset of vertices without unique neighbors)
Let $G=(V, E)$ be a graph. There exists a nonempty subset of its vertices $S \subseteq V$ such that $|S| \leq \frac{|V|}{2}+1$, which does not have any unique neighbors.

- \Rightarrow no infinite family of unique-expanders for $\alpha \geq 1 / 2$ and $\epsilon>0$.
- For a d-regular simple graph the bound can be improved to $O\left(\frac{\log d}{d}\right)$.

Main results

Odd neighbor expanders

Conjecture 1 (A small even subset)

Let $G=(V, E)$ be a graph. There exists a nonempty subset of its vertices $S \subseteq V$ such that $|S| \leq \frac{|V|}{2}+1$, which does not have any odd neighbors.

Partial results:

- Proved for bipartite graphs.
- Problem reduced to biconnected graphs.
- Experimentally verified for small graphs (up to 12 vertices).

Further research and open problems

(1) What is the general trade-off between values d, α and ϵ ?
(2) Is α for simple d-regular unique-expanders bounded by $O(1 / d)$?
(3) Are there 4 vertices without unique neighbors in every simple n-regular graph with $2 n$ vertices?
(9) Conjecture 1 is open for biconnected graphs, which are not bipartite.

Thank you for your attention!

Filip Hlásek
 fhlasek@gmail.com

Supervisor: doc. Mgr. Michal Koucký, Ph.D. (IÚUK)

Acknowledgement: The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement n. 616787. Partially supported by a grant from Neuron Fund for Support of Science.

Připomínka 1

... na str. 25 je dimenze prostorů jen 1 a ne 2 , jak je uvedeno. (To ale nevadí.)

Komentář

Vskutku, podstatné pro tvrzení je, že soustava $n+1$ lineárních rovnic o n neznámých mající jedno řešení má ještě alespoň jedno jiné řešení.

Připomínka 2

Na str. 16 by bylo vhodné uvést, proč platí nerovnost mezi druhým a třetím řádkem - proč se jde zbavit celé části. (Úprava je nicméně korektní.)

Komentář

Problém spočívá v nerovnosti $\left(\frac{n}{\lfloor x\rfloor}\right)^{\lfloor x\rfloor} \leq\left(\frac{n}{x}\right)^{x}$ pro $n \in \mathbb{N}$ a $0<x<n / e$. Derivace spojité funkce $\left(\frac{n}{x}\right)^{x}$ podle proměnné x je rovna

$$
\left(\frac{n}{x}\right)^{x} \cdot\left(\log \left(\frac{n}{x}\right)-1\right)
$$

a nulová pro $x=\frac{n}{e}$. Pro $0<x<\frac{n}{e}$ je derivace kladná a zkoumaná funkce tudiž rostoucí. Uznávám, že použitá nerovnost není zřejmá, a zaslouží podrobnější vysvětlení.

Připomínka 3

A pak překlepy v tabulce na str. 28, kde zápis $0<\alpha<0$ vzbuzuje pochybnosti.

Komentář

Správně má být $0<\alpha<1$, děkuji za upozornění.

